Vol. 115
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-03-16
Angular Localization of Radio-Frequency Sources Using a Compact Metamaterial Receive Antenna
By
Progress In Electromagnetics Research M, Vol. 115, 163-173, 2023
Abstract
Radio-frequency source localization becomes a major challenge for many applications such as beam-steering or MIMO communication. This task is commonly carried out by taking advantage of the adjustable radiation patterns of phased arrays to scan an area. Nevertheless, it can be difficult and expensive to implement in some frequency bands of the last generation of communication systems. Here, we propose an alternative based on a single port compact metamaterial antenna. We use a finite periodic array of sub-wavelength (λ/6) resonators for the design of this antenna. A microstrip line is added to excite the resonator array etched on a grounded low-loss substrate and to use it as a planar antenna. In such antenna system, the coupling between sub-wavelength resonators is able to induce a strong dispersion and leads to several complex radiation patterns over a specific narrow frequency band. We implement numerical methods to estimate the direction of a target antenna by taking benefits of the complex frequency signatures. We experimentally demonstrate that a single port sub-wavelength antenna made of a finite array of metamaterial resonators is able to retrieve the direction of a narrow band (3.6% relative bandwidth) emitting target around 5.5 GHz with a maximum precision of 3˚. Such a compact planar system (λ/3, λ/2 and 2λ/3) can be used to substitute the phased array localization technique in order to provide the necessary angular information in many applications such as mm-Wave communication and can be extended to high frequency regimes by using the corresponding resonators.
Citation
Abdelwaheb Ourir, Arnaud Tourin, Mathias Fink, Mohamed Kamoun, and Julien de Rosny, "Angular Localization of Radio-Frequency Sources Using a Compact Metamaterial Receive Antenna," Progress In Electromagnetics Research M, Vol. 115, 163-173, 2023.
doi:10.2528/PIERM22101703
References

1. Chia, M. Y. W., L. Brás, N. B. Carvalho, Pinho, L. Kulas, and K. Nyka, "A review of antennas for indoor positioning systems," International Journal of Antennas and Propagation, Vol. 2012, 953269, 2012.

2. Cheng, C.-H. and Y. Yan, "Indoor positioning system for wireless sensor networks based on two-stage fuzzy inference," International Journal of Distributed Sensor Networks, Vol. 14, May 2018.

3. Garcia, N., H. Wymeersch, E. G. Larsson, A. M. Haimovich, and M. Coulon, "Direct localization for massive MIMO," IEEE Transactions on Signal Processing, Vol. 65, No. 10, 2475-2487, 2017.
doi:10.1109/TSP.2017.2666779

4. Guerra, A., F. Guidi, and D. Dardari, "Position and orientation error bound for wideband massive antenna arrays," 2015 IEEE International Conference on Communication Workshop (ICCW), 853-858, 2015.
doi:10.1109/ICCW.2015.7247282

5. Savic, V. and E. G. Larsson, "Fingerprinting-based positioning in distributed massive MIMO systems," 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), 1-5, 2015.

6. Guidi, F., A. Guerra, and D. Dardari, "Personal mobile radars with millimeter-wave massive arrays for indoor mapping," IEEE Transactions on Mobile Computing, Vol. 15, No. 6, 1471-1484, 2016.
doi:10.1109/TMC.2015.2467373

7. Witrisal, K., Meissner, E. Leitinger, Y. Shen, C. Gustafson, F. Tufvesson, K. Haneda, D. Dardari, A. F. Molisch, A. Conti, and M. Z. Win, "High-accuracy localization for assisted living: 5G systems will turn multipath channels from foe to friend," IEEE Signal Processing Magazine, Vol. 33, No. 2, 59-70, 2016.
doi:10.1109/MSP.2015.2504328

8. Qiu, L., X. Liang, and Z. Huang, "Patl: A RFID tag localization based on phased array antenna," Scientific Reports, Vol. 7, No. 1, 44183, 2017.
doi:10.1038/srep44183

9. Du, H., C. Zhang, Q. Ye, W. Xu, L. Kibenge, and K. Yao, "A hybrid outdoor localization scheme with high-position accuracy and low-power consumption," EURASIP Journal on Wireless Communications and Networking, Vol. 2018, No. 1, 4, 2018.
doi:10.1186/s13638-017-1010-4

10. Alibakhshikenari, M., F. Babaeian, B. S. Virdee, S. Aïssa, L. Azpilicueta, C. H. See, A. A. Althuwayb, I. Huynen, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "A comprehensive survey on `various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems'," IEEE Access, Vol. 8, 192965-193004, 2020.
doi:10.1109/ACCESS.2020.3032826

11. Alibakhshikenari, M., B. S. Virdee, H. Benetatos, E. M. Ali, M. Soruri, M. Dalarsson, M. Naser-Moghadasi, C. H. See, A. Pietrenko-Dabrowska, S. Koziel, S. Szczepanski, and E. Limiti, "An innovative antenna array with high inter element isolation for sub-6 GHz 5G MIMO communication systems," Scientific Reports, Vol. 12, No. 1, 7907, 2022.
doi:10.1038/s41598-022-12119-2

12. Alibakhshikenari, M., B. S. Virdee, Shukla, C. H. See, R. A. Abd-Alhameed, F. Falcone, K. Quazzane, and E. Limiti, "Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems," IET Microwaves, Antennas & Propagation, Vol. 14, No. 3, 183-188, 2020.
doi:10.1049/iet-map.2019.0362

13. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "Surface wave reduction in antenna arrays using metasurface inclusion for MIMO and SAR systems," Radio Science, Vol. 54, No. 11, 1067-1075, 2019.
doi:10.1029/2019RS006871

14. Alibakhshikenari, M., B. S. Virdee, Shukla, C. H. See, R. Abd-Alhameed, M. Khalily, F. Falcone, and E. Limiti, "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 7, No. 9, 2018.
doi:10.3390/electronics7090198

15. Ourir, A., A. Mokh, R. Khayatzadeh, M. Kamoun, A. Tourin, A. Fink, and J. de Rosny, "Angular localization of wideband sources using a single port metamaterial receive antenna," 2022 16th European Conference on Antennas and Propagation (EuCAP), 1-4, 2022.

16. Liu, L., C. Caloz, and T. Itoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Electronics Letters, Vol. 38, No. 2, 1414-1416, Nov. 2002.

17. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773

18. Pendry, J., A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, Nov. 1999.

19. Abdeddaim, R., A. Ourir, and J. de Rosny, "Realizing a negative index metamaterial by controlling hybridization of trapped modes," Phys. Rev. B, Vol. 83, 033101, Jan. 2011.
doi:10.1103/PhysRevB.83.033101

20. Ourir, A., R. Abdeddaim, and J. de Rosny, "Double-T metamaterial for parallel and normal transverse electric incident waves," Opt. Lett., Vol. 36, 1527-1529, May 2011.
doi:10.1364/OL.36.001527

21. Ourir, A. and H. H. Ouslimani, "Negative refractive index in symmetric cut-wire pair metamaterial," Applied Physics Letters, Vol. 98, No. 11, 113505, 2011.
doi:10.1063/1.3565160

22. Enoch, S., G. Tayeb, Sabouroux, N. Guérin, and Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 213902, Nov. 2002.

23. Ourir, A., A. de Lustrac, and J.-M. Lourtioz, "All-metamaterial-based subwavelength cavities (lambda/60) for ultrathin directive antennas," Applied Physics Letters, Vol. 88, No. 8, 084103, 2006.
doi:10.1063/1.2172740

24. Alibakhshikenari, M., E. M. Ali, M. Soruri, M. Dalarsson, M. Naser-Moghadasi, B. S. Virdee, C. Stefanovic, A. Pietrenko-Dabrowska, S. Koziel, S. Szczepanski, and E. Limiti, "A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems," IEEE Access, Vol. 10, 3668-3692, 2022.
doi:10.1109/ACCESS.2021.3140156

25. Alibakhshikenari, M., B. S. Virdee, Shukla, N. O. Parchin, L. Azpilicueta, C. H. See, R. A. Abd-Alhameed, F. Falcone, I. Huynen, T. A. Denidni, and E. Limiti, "Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection," IEEE Access, Vol. 8, 174667-174678, 2020.
doi:10.1109/ACCESS.2020.3025672

26. Jouveaud, C., A. Ourir, and J. Rosny, "Surface waves radiation by finite arrays of magnetoelectric resonators," Progress In Electromagnetics Research, Vol. 132, 177-198, 2012.
doi:10.2528/PIER12071009

27. Jouvaud, C., J. de Rosny, and A. Ourir, "Adaptive metamaterial antenna using coupled tunable split-ring resonators," Electronics Letters, Vol. 49, 518-519, Apr. 2013.
doi:10.1049/el.2013.0398

28. Jouvaud, C., A. Ourir, and J. Rosny, "Smart tuning," Electronics Letters, Vol. 49, No. 8, 512, 2013.
doi:10.1049/el.2013.0398

29. Ourir, A., G. Lerosey, F. Lemoult, M. Fink, and J. de Rosny, "Far field subwavelength imaging of magnetic patterns," Applied Physics Letters, Vol. 101, No. 11, 111102, 2012.
doi:10.1063/1.4748974

30. Jouvaud, C., A. Ourir, and J. de Rosny, "Far-field imaging with a multi-frequency metalens," Applied Physics Letters, Vol. 104, No. 24, 2014.
doi:10.1063/1.4882277

31. Schurig, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 041109, 2006.
doi:10.1063/1.2166681

32. Zhou, L., H. Ouslimani, A. Priou, A. Ourir, and O. Maas, "Understanding the behavior of miniaturized metamaterial-based dipole antennas in leaky wave regime," Applied Physics A, Vol. 106, No. 1, 145-149, 2012.
doi:10.1007/s00339-011-6656-x