Vol. 5
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-10-27
Simulation and Realization of an Active Metamaterial Cell for GSM/UMTS
By
Progress In Electromagnetics Research M, Vol. 5, 55-65, 2008
Abstract
Simulation and realization of an active metamateial cell are presented. This metamaterial cell has a power loss due to resistance in the coils. This paper presents a new nanometer negative resistance MOSFET (NR-MOSFET), which is used as a controllable negative resistance to compensate for the nanometer metamaterial losses. The negative resistance was about -320Ω. A form of a lumped circuit model with active and passive resonance is presented. A negative real part of the refractive index exists in a band width from 1.11 GHz to 1.22 GHz. This model can be used as a core cell for mobile communication smart antenna.
Citation
Mohamed Al-Azab, "Simulation and Realization of an Active Metamaterial Cell for GSM/UMTS," Progress In Electromagnetics Research M, Vol. 5, 55-65, 2008.
doi:10.2528/PIERM08082501
References

1. Cui, T. J., H. F. Ma, R. Liu, B. Zhao, Q. Cheng, and J. Y. Chin, "A symmetrical circuit model describing all kinds of circuit meta materials," Progress In Electromagnetics Research B, Vol. 5, 63-76, 2008.
doi:10.2528/PIERB08013009

2. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wide-angle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.
doi:10.2528/PIERL07111809

3. Abdalla, M. A. and Z. Hu, "On the study of left-handed coplanar waveguide coupler on ferrite substrate," Progress In Electromagnetics Letters, Vol. 1, 69-75, 2008.
doi:10.2528/PIERL07111808

4. Suyama, T., Y. Okuno, and T. Matsuda, "Plasmon resonance-absorption in a metal grating and its application for refractive-index measurement," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 185-169, 2006.
doi:10.1163/156939306775777305

5. Grzegorezyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2035-2064, 2006.

6. Ramakrishna, S. A. and J. B. Pendry, "Removal of absorption and increase in resolution in a near-field lens via optical gain," Phys. Rev. B, Vol. 67, No. 20, 201101, 2003.
doi:10.1103/PhysRevB.67.201101

7. Noginov, M. A., G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, "Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium ," Opt. Lett., Vol. 31, 3022, 2006.
doi:10.1364/OL.31.003022

8. Popov, A. K. and V. M. Shalaev, "Compensating losses in negative-index metamaterials by optical parametric amplification," Opt. Lett., Vol. 31, 2169, 2006.
doi:10.1364/OL.31.002169

9. Shalaev, V. M., "Optical negative-index metamaterials," Nat. Photonics, Vol. 1, 41-48, 2007.
doi:10.1038/nphoton.2006.49

10. Chen, H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585

11. Guo, Y. and R. Xu, "Ultra-wideband power splitting/combining technique using zero-degree left-handed transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1109-1118, 2007.

12. Wang, M. Y. and J. Xu, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777

13. Shelby, R. A., N. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 229, 77-79, 2001.
doi:10.1126/science.1058847

14. Engheta, N., "An idea for thin sub wavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576

15. Abdalla, M., "ET alga differential 0.13 μm CMOS active inductor for high-frequency shifters," IEEE ISCAS 2006, 3341-3344, 2006.

16. Vainikainen, P., et al. "Advances in diversity performance analysis of mobile terminal antennas," International Symposium on Antennas and Propagation ISAP, 649-652, Sendai, Japan, Aug. 2004.

17. El-Hennawy, A., E. Al-Mazuki, and S. A. L. Ghamdi, "Modeling and characterization of a new negative resistance NR-MOSFET for VLSI application.ICM 91," Proc. the International Conference Micro. Electronics, Cairo, Egypt, Dec.1991.

18. Chua, L., J. Yu, and Y.-Y. Yu, "Bipolar-JFET-MOSFET negative resistance devices," IEEE Transactions on Circuits and Systems, Vol. 32, No. 1, 46-61, Jan.1985.
doi:10.1109/TCS.1985.1085599

19. Ramadan, A., A. El-Hennawe, K. Hassan, and A. A. Elnour, "Study and characterization of a new MOSFET voltage controlled negative resistance for super selective IC tank circuits," International Journal of Electronics, Vol. 86, No. 3, 311-319, 1999.
doi:10.1080/002072199133454

20. Ciais, P., R. Taraj, G. Kossiavas, and C. Luxey, "Design of an internal quad-band antenna for mobile phones," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 148-150, 2004.
doi:10.1109/LMWC.2004.825186