Vol. 68
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Diffraction of Electromagnetic Wave by Disk and Circular Hole in a Perfectly Conducting Plane
By
, Vol. 68, 113-150, 2007
Abstract
The scattering of electromagnetic plane wave by a perfectly conducting disk is formulated rigorously in a form of the dual integral equations (abbreviated as DIE). The unknowns are the induced surface current (or magnetic field) and the tangential components of the electric field on the disk. The solution for the surface current is expanded in terms of a set of functions which satisfy Maxwell's equation for the magnetic field on the disk and the required edge condition. At this step we have used the method of the Kobayashi potential and the vector Hankel transform. Applying the pro jection solves the rest of a pair of equations. Thus the problem reduces to the matrix equations for the expansion coefficients. The matrix elements are given in terms of the infinite integrals with a single variable and these may be transformed into infinite series that are convenient for numerical computation. The numerical results are obtained for far field patterns, current densities induced on the disk, transmission coefficient through the circular aperture, and radar cross section. The results are compared with those obtained by other methods when they are available, and agreement among them is fairly well.
Citation
Kohei Hongo, and Qaisar Naqvi, "Diffraction of Electromagnetic Wave by Disk and Circular Hole in a Perfectly Conducting Plane," , Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102
References

1. Silver, S., Microwave Antenna Theory and Design, McGraw-Hill Book Co., 1949.

2. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley & Sons, 1982.

3. Ufimtsev, P. Ya, "Method of edge waves in the physical theory of diffraction," Foreign Technology Division, 1962.

4. Mitzner, K. M., "Incremental length diffractions," Aircraft Division Northrop Corp., 1-296, 1974.

5. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Trans. Antennas Propagat., Vol. AP-32, 252-258, 1984.
doi:10.1109/TAP.1984.1143303

6. Ando, M., "Radiation pattern analysis of reflector antennas," Electron. Commu. in Japan, Vol. 68, No. 4, 93-102, 1985.

7. Shore, R. A. and A. D. Yaghjian, "Comparison of high-frequency scattering determined from PO fields enhanced with alternative ILDCs," IEEE Trans. Antennas Propagat., Vol. 52, 336-341, 2004.
doi:10.1109/TAP.2003.822452

8. Duan, D. W.Y. Rahmat-Samii, and J. P. Mahon, "Scattering from a circular disk; A comparative study of PTD and GTD techniques," Proc. IEEE, Vol. 79, No. 10, 1472-1480, 1991.

9. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Amer., Vol. 52, No. 2, 116-130, 1962.

10. Keller, J. B., "Diffraction by an aperture," J. Appl. Phys., Vol. 28, No. 4, 426-444, 1957.
doi:10.1063/1.1722767

11. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction of an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.

12. Ahluwalia, D. S., R. M. Lewis, and J. Boersma, "Uniform asymptotic theory of diffraction by a plane screen," SIAM J. Appl. Math., Vol. 16, 783-807, 1968.
doi:10.1137/0116065

13. Lee, S. W. and G. A. Deschamps, "A uniform asymptotic theory of electromagnetic diffraction by a curved wedge," IEEE Trans. Antennas Propagat., Vol. 24, No. 1, 25-34, 1976.
doi:10.1109/TAP.1976.1141283

14. Miller, R. F., "An approximate theory of the diffraction of an electromagnetic wave by an aperture in a plane screen," Proc. IEE, Vol. 103C, 177-185, 1956.

15. Miller, R. F., "The diffraction of an electromagnetic wave by a circular aperture," Proc. IEE, Vol. 104C, 87-95, 1957.

16. Clemmow, P. C., "Edge currents in diffraction theory," Transaction of Inst. Radio Engrs., Vol. AP-4, 282-287, 1956.

17. Braunbeck, W., "On the diffraction field near a plane screen corner," IEEE Trans. Antennas Propagat., Vol. 4, 219-223, 1956.
doi:10.1109/TAP.1956.1144411

18. Ryan, C. E. and L. Peter, "Evaluation of edge diffracted fields including equivalent currents for the caustic regions," IEEE Trans. Antennas Propagat., Vol. 17, 292-299, 1969.
doi:10.1109/TAP.1969.1139445

19. James, G. L. and V. Kerdemalidis, "Reflector antenna radiation pattern analysis by equivalent edge currents," IEEE Trans. Antennas Propagat., Vol. 21, 19-24, 1973.
doi:10.1109/TAP.1973.1140409

20. Levine, H. and J. Schwinger, "On the theory of electromagnetic wave diffraction by a aperture in an infinite plane conducting screen," Comm. Pure and Appl. Math., Vol. 3, 355-391, 1950.

21. Hung, C., R. D. Kodis, and H. Levine, "Diffraction by aperture," J. of Appl. Phys., Vol. 26, 151-165, 1953.
doi:10.1063/1.1721953

22. Harrington, R. F., Field Computation by Moment Methods, Krieger Pub. Co., Florida, 1968.

23. Li, L. W., P. S. Kooi, Y. L. Qiu, T. S. Yeo, and M. S. Leong, "Analysis of electromagnetic scattering of conducting circular disk using a hybrid method," Progress In Electromagnetics Research, Vol. 20, 101-123, 1998.
doi:10.2528/PIER97111200

24. Bouwkamp, C. J., "Diffraction theory," Rep. Progr. Phys., Vol. 17, 35-100, 1954.
doi:10.1088/0034-4885/17/1/302

25. Bouwkamp, C. J., "On the diffraction of electromagnetic wave by circular disks and holes," Philips Res. Rep., Vol. 5, 401-522, 1950.

26. Meixner, J. and W. Andrejewski, "Strenge Theorie der Beugung ebener elektromagnetischen Wellen an der vollkommen leitende Kreissheibe und an der kreisformigne ̈Offnung im vollkommen leitenden ebenen Schirm," Ann. Physik, Vol. 7, 157-158, 1950.

27. Andrejewski, W., "Die Beugung elektromagnetischen Wellen an der leitende Kreissheibe und an der kreisformigne ̈Offnung im leitenden ebenen Schirm," Z. Angew. Phys., Vol. 5, 178-186, 1950.

28. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1944.

29. Nomura, Y. and S. Katsura, "Diffraction of electric wave by circular plate and circular hole," Sci. Rep., Vol. 10, 1-26, 1958.

30. Inawashiro, S., "Diffraction of electromagnetic waves from an electric dipole by a conducting circular disk," J. Phys. Soc. Japan, Vol. 18, 273-287, 1963.

31. Bowman, J. J., T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering from Simple Shapes, Amesterdam, North-Holland, 1969.

32. Chew, W. C. and J. A. Kong, "Resonance of nonaxial symmetric modes in circular microstrip disk anntena," J. Math. Phys., Vol. 21, No. 3, 2590-2598, 1980.
doi:10.1063/1.524366

33. Seshadri, S. R. and T. T. Wu, "High frequency diffraction of electromagnetic wave by a circular aperture in an infinite plane conducting screen," IRE Trans. Antennas Propagat., Vol. AP-8, 27-36, 1960.
doi:10.1109/TAP.1960.1144810

34. Jones, D. S., "Diffraction of a high-frequency plane electromag- netic wave by a perfectly conducting circular disc," Proc. Cam- bridge Phil. Soc., Vol. 61, 247-270, 1965.

35. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Plenum Press, 1970.

36. Abramowitz, M. and I. A. Stugun, Handbook of Mathematical Functions, Dover, 1970.