Vol. 9
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-11-02
Bandwidth Analysis by Introducing Slots in Microstrip Antenna Design Using ANN
By
Progress In Electromagnetics Research M, Vol. 9, 107-122, 2009
Abstract
Many applications of microstrip antenna are rendered by their inherent narrow bandwidth. In this paper a new approach is proposed to design inset feed microstrip antenna with slots in it to improve the antenna bandwidth. This paper deals with the design of slotted microsrip antenna on a substrate of thickness 1.588 mm that gives wideband characteristics using ANN. The illustrated patch antenna gives enhanced bandwidth as compared to antenna with out slots of the same physical dimensions. In the present work an Artificial Neural Network (ANN) model is developed to analyse the bandwidth of the example antenna. The Method of Moments (MOM) based IE3D software has been used to generate training and test data for the ANN. The example antenna is also designed physically with glass epoxy substrate with εr = 4.7 for few results for testing the artificial neural network model. The different variants of training algorithm of MLPFFB-ANN (Multilayer Perceptron feed forward back propagation Artificial Neural Network) and RBF -ANN (Radial basis function Artificial Neural Network) has been used to implement the network model. The results obtained from artificial neural network when compared with experimental and simulation results, found satisfactory and also it is concluded that RBF network is more accurate and fast as compared to different variants of backpropagation training algorithms of MLPFFBP.
Citation
Vandana Vikas Thakery, and Pramod Kumar Singhal, "Bandwidth Analysis by Introducing Slots in Microstrip Antenna Design Using ANN," Progress In Electromagnetics Research M, Vol. 9, 107-122, 2009.
doi:10.2528/PIERM09093002
References

1. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House Publishers, 2000.

2. Watson, P. M. and K. C. Gupta, "Design and optimization of CPW circuits using EM ANN models for CPW components," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 12, 2515-2523, Dec. 1997.
doi:10.1109/22.643868

3. Zaabab, A. H., Q. J. Zhang, and M. Nakhla, "Analysis and optimization of microwave circuits & devices using neural network models," IEEE MTT-S Digest, 393-396, 1994.

4. Naser-Moghaddasi, M., P. D. Barjoei, and A. Naghsh, "Heuristic artificial neural network for analysing and synthesizing rectangular microstrip anteena," IJCSNS International Journal of Computer Science and Network Security, Vol. 7, No. 12, Dec. 2007.

5. Turker, N., F. GÄunes, and T. Yildirim, "Artificial neural design of microstrip antennas," Turk. J. Elec. Engin., Vol. 14, No. 3, 2006.

6. Peik, S. E., G. Coutts, and R. R. Mansour, "Application of neural networks in microwave circuit modelling," Electrical and computer Engineering, 1998, IEEE Canadian Conference, Vol. 2, 928-931, May 24--28, 1998.

7. Devi, S., D. C. Panda, and S. S. Pattnaik, "A novel method of using artificial neural networks to calculate input impedance of circular microstrip antenna," Antennas and Propagation Society International Symposium, Vol. 3, 462-465, June 16--21, 2002.

8. Mishra, R. K. and A. Patnaik, "Neural network-based CAD model for the design of square-patch antennas," IEEE Trans. on Antennas Propagat., Vol. 46, No. 12, 1890-1891, Dec. 1998.
doi:10.1109/8.743842

9. Patnaik, A., R. K. Mishra, G. K. Patra, and S. K. Dash, "An artificial neural network model for effective dielectric constant of microstrip line," IEEE Trans. on Antennas Propagat., Vol. 45, No. 11, 1697, Nov. 1997.
doi:10.1109/8.650084

10. Karaboga, D., K. Guney, S. Sagiroglu, and M. Erler, "Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas," IEEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 146, No. 2, 155-159, Apr. 1999.
doi:10.1049/ip-map:19990136

11. Guney, K. and N. Sarikaya, "Resonant frequency calculation for circular microstrip antennas with a dielectric cover using adaptive network-based fuzzy inference system optimized by various algorithms," Progress In Electromagnetic Research, Vol. 72, 279-306, 2007.
doi:10.2528/PIER07031302

12. Pattnaik, S. S., D. C. Panda, and S. Devi, "Radiation resistance of coax-fed rectangular microstrip antenna using artificial neural networks," Microwave and Optical Technology Lett., Vol. 34, No. 1, 51-53, Jul. 5, 2002.
doi:10.1002/mop.10370

13. James, J. R., P. S. Hall, and C.Wood, Microstrip Antenna Theory and Design, Peter Peregrines (IEE), Stevenage, UK, 1981.

14. Guney, K., "Resonant frequency of a tuneable rectangular microstrip patch antenna," Microwave and Optical Technology Lett., Vol. 7, 581-585, 1994.
doi:10.1002/mop.4650071216

15. Herscovici, N., "New consideration in the design of microstrip antenna," IEEE Trans. on Antennas Propagat., Vol. 46, No. 6, 807-812, Jun. 1998.
doi:10.1109/8.686766

16. Pattnaik, S. S., G. Lazzi, and O. P. Gandhi, "On the use of wideband wide band high gain microstrip antenna for mobile telephones," IEEE Transaction on Antenna and Propagation Magzine, Vol. 40, No. 1, 88-90, Feb. 1998.
doi:10.1109/74.667369

17. Palit, S. K. and N. Vijayasinghe, "Broadband microstrip antenna design," China J. Radio Sci., 670-673, 1995.

18. Croq, F., G. Kossiavas, and A. Papienik, "Stacked resonators for bandwidth enhancement: A comparison of two feeding techniques," IEEE Proc. Microwave Antennas Propagation, Vol. 40, No. 4, 303-308, 1993.

19. Sanchez-Hernadaz, D. and I. D. Robertson, "A survey of broadband microstrip patch antennas," Microwave Journal, 60-84, Sept. 1996.

20. Lee, K. F., K. M. Luk, K. F. Tong, Y. L. Yung, and T. Huyuh, "Experimental study of the rectangular patch with a U-shaped slot," IEEE International Symposium on Antennas and Propagation Digest, 10-13, Jul. 21--26, 1996.

21. Palit, S. K. and A. Hamadi, "Design and development of wideband and dual band microstrip antenna," IEEE Proceedings --- Microwave, Antennas, and Propagation, Vol. 146, No. 1, 1094-1100, Feb. 1999.

22. Robert, B., T. Razvan, and A. Papernik, "Compact patch antenna integrates monolithic amp," Microwave & RF, Vol. 34, No. 4, 115-125, Mar. 1995.

23. Palit, S. K. and A. Hamadi, "Design and development of wideband and dual microstrip antennas," IEEE Proceedings --- Microwaves, Antenna and Propagation, Vol. 146, No. 1, 35-39, Feb. 1999.

24. Yong, F., X. Zhang, X. Ye, and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communication," IEEE Trans. on Antennas Propagat., Vol. 49, No. 7, 1094-1100, Jul. 2001.
doi:10.1109/8.933489

25. Balanis, C. A., Antenna Theory, John Wiley & Sons, Inc., 1997.

26. Pozar, D. M., "Microstrip antenna," Proc. IEEE, Vol. 80, 79-81, 1992.

27. Hassoun, M. H., Fundamentals of Artificial Neural Networks , Chapter 8, New Delhi, Prentice Hall of India, 1999.

28. Haykin, S., Neural Networks, 2nd edition, pHI, 2003.