1. Cohn, S. B. "Properties of ridge waveguide," Proceedings of the IRE, Vol. 35, 783-788, 1947.
doi:10.1109/JRPROC.1947.226277 Google Scholar
2. Hopfer, S., "The design of ridged waveguides," IEEE Trans. Microwave Theory Tech., Vol. 3, No. 10, 20-29, 1955.
doi:10.1109/TMTT.1955.1124972 Google Scholar
3. Rong, Y. and K. A. Zak, "Characteristics of generalized rectangular and circular ridge waveguides," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 2, 258-265, 2000.
doi:10.1109/22.821772 Google Scholar
4. Tsandoulas, G. N. and G. H. Knittel, "The analysis and design of dualpolarization square-waveguide phased arrays," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 6, 796-808, 1973.
doi:10.1109/TAP.1973.1140605 Google Scholar
5. De Villiers, D. I. L., P. Meyer and K D Palmer, "Broadband offset quad-ridged waveguide orthomode transducer," Electronics Letters, Vol. 45, No. 1, 60-62, 2009.
doi:10.1049/el:20092887 Google Scholar
6. Ding, S., B. Jia, F. Li, and Z. Zhu, "3D simulation of 18-vane 5.8 GHz magnetron," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 1925-1930, 2008.
doi:10.1163/156939308787537946 Google Scholar
7. Singh, K., P. K. Jain, and B. N. Basu, "Analysis of a coaxial waveguide corrugated with wedge-shaped radial vanes considering azimuthal harmonic effects," Progress In Electromagnetics Research, Vol. 47, 297-312, 2004.
doi:10.2528/PIER04010201 Google Scholar
8. Singh, K., P. K. Jain, and B. N. Basu, "Analysis of a corrugated coaxial waveguide resonator for mode rarefaction in a gyrotron," IEEE Trans. Plasma Science, Vol. 33, 1024-1030, 2005.
doi:10.1109/TPS.2005.848604 Google Scholar
9. Barroso, J. J., R. A. Correa, and P. J. de Castro, "Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 9, 1221-1230, 1998.
doi:10.1109/22.709460 Google Scholar
10. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 56-64, Jan. 1996.
doi:10.1109/22.481385 Google Scholar
11. Agrawal, M., G. Singh, P. K. Jain, and B. N. Basu, "Analysis of tapered vane-loaded structures for broadband gyro-TWTs," IEEE Trans. Plasma Science, Vol. 29, 439-444, 2001.
doi:10.1109/27.928941 Google Scholar
12. Qiu, C. R., Z. B. Ouyang, S. C. Zhang, H. B. Zhang, and J. B. Jin, "Self-consistent nonlinear investigation of an outer-slotted-coaxial waveguide gyrotron traveling-wave amplifier," IEEE Trans. Plasma Science, Vol. 33, No. 3, 1013-1018, 2005.
doi:10.1109/TPS.2005.848600 Google Scholar
13. Chen, M. H., G. N. Tsandoulas, and F. G. Willwerth, "Modal characteristics of quadruple-ridged circular and square waveguides," IEEE Trans. Microwave Theory Tech., Vol. 22, No. 8, 801-804, 1974.
doi:10.1109/TMTT.1974.1128341 Google Scholar
14. Sun, W. and C. A. Balanis, "Analysis and design of quadruple-ridged waveguides," IEEE Trans. Microwave Theory Tech., Vol. 4, No. 12, 2201-2207, 1994.
doi:10.1109/22.339743 Google Scholar
15. Tang, Y., J. Zhao, and W. Wu, "Analysis of quadruple-ridged square waveguide by multilayer perceptron neural network model," Asia-Pacific Microwave Conference, APMC 2006, 1912-1918, 2006.
doi:10.1109/APMC.2006.4429782 Google Scholar
16. Tang, Y., J. Zhao, and W. Wu, "Mode-matching analysis of quadruple-ridged square waveguides," Microwave and Optical Technology Letters, Vol. 47, No. 2, 190-194, 2005.
doi:10.1002/mop.21120 Google Scholar
17. Sexson, T., "Quadruply ridged hom,", Tech. Rep., ECOM-018 1-M1 160, Army Electronics Command., US, Mar. 1968. Google Scholar
18. Canatan, F., "Cutoff wavenumbers of ridged circular waveguides via Ritz-Galerkin approach," Electronics Letters, Vol. 25, 1036-1038, 1989.
doi:10.1049/el:19890692 Google Scholar
19. Rong, Y., "The bandwidth characteristics of ridged circular waveguide," Microwave and Optical Technology Letters, Vol. 3, 347-350, 1990.
doi:10.1002/mop.4650031006 Google Scholar
20. Zheng, Q., F. Xie, B. Yao, and ect., "Analysis of a ridge waveguide family based on subregion solution of multipole theory," Automation Congress, 1-4, WAC, World, 2008. Google Scholar
21. Skinner, S. J. and G. L. James, "Wide-band orthomode transducers," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 2, 294-300, 1991.
doi:10.1109/22.102973 Google Scholar
22. Schiff, B., "Eigenvalues for ridged and other waveguides containing corners of angle 3π/2 or 2π by the finite element method," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 6, 1034-1039, 1991.
doi:10.1109/22.81677 Google Scholar
23. Song, C. H. and J. P. Wolf, "The scaled boundary finite-element method --- Alias consistent infinitesimal finite-element cell method --- For elastodynamics," Computer Methods in Applied Mechanics and Engineering, Vol. 147, 329-355, 1997.
doi:10.1016/S0045-7825(97)00021-2 Google Scholar
24. Wolf, J. P. and C. M. Song, The Scaled Boundary Finite Element Method, Wiley Press, Chichester, England, 2003.
25. Liu, J., G. Lin, F. Wang, et al. "The scaled boundary finite element method applied to electromagnetic field problems," IOP Conference Series: Materials Science and Engineering, Vol. 10, No. 1, 2245, Syndey, Jul. 2010. Google Scholar
26. Song, C. M., "The scaled boundary finite element method in structural dynamics," International Journal for Numerical Methods in Engineering, Vol. 77, 1139-1171, 2009.
doi:10.1002/nme.2454 Google Scholar
27. Deeks, A. J. and J. P. Wolf, "A virtual work derivation of the scaled boundary finite-element method for elastostatics,", Vol. 28, 489-504, 2002. Google Scholar
28. Hu , Z., G. Lin, Y. Wang, J. Liu, "A hamiltonian-based derivation of scaled boundary finite element method for elasticity problems," IOP Conference Series: Materials Science and Engineering, Vol. 10, No. 1, 2213, Syndey, Jul. 2010. Google Scholar