Vol. 17
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-01-31
Optical Absorption Enhancement in Solar Cells via 3D Photonic Crystal Structures
By
Progress In Electromagnetics Research M, Vol. 17, 1-11, 2011
Abstract
Light concentrating structures with three-dimensional photonic crystals (3D PhCs) for solar cell applications are investigated via simulation. The 3D opal PhCs are suggested as an intermediate layer in the concentrator system for solar cells. It is found that the light absorption is significantly enhanced due to the adding of diffractive effects of PhCs to the concentrator. Three types of PhCs are considered in four scenarios to verify the absorption enhancement by such a light concentrating structure. Our calculations show that the face-centered cubic PhC can create an absorbing efficiency superior to the others under a specified lattice orientation pointing to the sun, which results in an enhancement factor of 1.56 in absorption for the 500--1100 nm spectral range.
Citation
Jiun-Yeu Chen, Eric Li, and Lien-Wen Chen, "Optical Absorption Enhancement in Solar Cells via 3D Photonic Crystal Structures," Progress In Electromagnetics Research M, Vol. 17, 1-11, 2011.
doi:10.2528/PIERM10123008
References

1. Poortmans, J. and V. Arkhipov, Thin Film Solar Cells Fabrication, Characterization and Applications, Wiley, Chichester, 2006.
doi:10.1002/0470091282

2. Luque, A. and S. Hegedus, Handbook of Photovoltaic Science and Engineering, Wiley, Chichester, 2003.
doi:10.1002/0470014008

3. Brendel, R., "Thin-film Crystalline Silicon Solar Cells," Wiley-VCH, Weinheim, 2003.

4. Peters, M., J. C. Goldschmidt, P. Loper, B. Groβ, J. Upping, F. Dimroth, R. B. Wehrspohn, and B. Blasi, "Spectrally-selective photonic structures for PV applications," Energies, Vol. 3, 171-193, 2010.
doi:10.3390/en3020171

5. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mat., Vol. 9, 205-213, 2010.
doi:10.1038/nmat2629

6. Kroll, M., S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells --- a numerical study," Phys. Stat. Sol. (a), Vol. 205, 2777-2795, 2008.
doi:10.1002/pssa.200880453

7. Goldschmidt, J. C., M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, "Increasing the efficiency of fluorescent concentrator systems," Solar Energy Mater. & Solar Cells, Vol. 93, 176-182, 2009.
doi:10.1016/j.solmat.2008.09.048

8. Zeng , L., P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, "Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector," Appl. Phys. Lett., Vol. 93, 221105, 2008.
doi:10.1063/1.3039787

9. Bielawny, A., J. Upping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, and M. Knez, "3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell," Phys. Stat. Sol. (a), Vol. 205, 2796-2810, 2008.
doi:10.1002/pssa.200880455

10. Mallick, S. B., M. Agrawal, and P. Peumans, "Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells," Opt. Express, Vol. 18, 5691-5706, 2010.
doi:10.1364/OE.18.005691

11. Archuleta-Garcia, R., D. Moctezuma-Enriquez, and J. Manzanares-Martinez, "Enlargement of photonic band gap in porous silicon dielectric mirrors," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 351-361, 2010.
doi:10.1163/156939310790735732

12. Li, H. and X. Yang, "Large absolute band gaps in two-dimensional photonic crystals fabricated by a three-order-effect method," Progress In Electromagnetics Research, Vol. 108, 385-400, 2010.
doi:10.2528/PIER10072505

13. Florescu , M., H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, "Improving solar cell efficiency using photonic band-gap materials," Solar Energy Mater. & Solar Cells, Vol. 91, 1599-1610, 2007.
doi:10.1016/j.solmat.2007.05.001

14. Zhou, D. and R. Biswas, "Photonic crystal enhanced light-trapping in thin film solar cells," J. Appl. Phys., Vol. 103, 093102, 2008.
doi:10.1063/1.2908212

15. Chutinan, A. and and S. John, "Light trapping and absorption optimization in certain thin-film photonic crystal architectures," Phys. Rev. A, Vol. 78, 023825, 2008.
doi:10.1103/PhysRevA.78.023825

16. Chutinan, A., N. P. Kherani, and S. Zukotynski, "High-efficiency photonic crystal solar cell architecture," Opt. Express, Vol. 17, 8871-8878, 2009.
doi:10.1364/OE.17.008871

17. Duche, D., L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, "Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells," Appl. Phys. Lett., Vol. 92, 193310, 2008.
doi:10.1063/1.2929747

18. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, Princeton, 2008.

19. Bielawny, A., C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, "Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells," Opt. Express, Vol. 17, 8439-8466, 2009.
doi:10.1364/OE.17.008439

20. Lourtioz, J.-M., H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, "Photonic Crystals: Towards Nanoscale Photonic Devices," Springer, Berlin, 2005.

21. Palik , E. D., Handbook of Optical Constants of Solids, Academic Press, Orlando, 1997.

22. Air Mass 1.5 Spectra, American Society for Testing and Materials, , http://rredc.nrel.gov/solar/spectra/am1.5/.

23. Mutitu, J. G., S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, "Thin film silicon solar cell design based on photonic crystal and diffractive grating structures," Opt. Express, Vol. 16, 15238-15248, 2008.
doi:10.1364/OE.16.015238