Vol. 40
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-12-09
Intra-Body Propagation Channel Investigation Using Electrically Coupled Loop Antenna
By
Progress In Electromagnetics Research M, Vol. 40, 57-67, 2014
Abstract
Knowledge of propagation media, typically gathered through physical experiments and simulations, is absolutely critical in successful transceiver design. In the case of medical implants, physical experiments are extremely difficult. Therefore, we rely on simulations in most studies. In this paper, Path Loss (PL) between implanted antennas, as a measure of propagation channel characteristics, is investigated using High Frequency Structure Simulator (HFSS) and Remcom's XFDTD 7 (XF7). An Electrically Coupled Loop Antenna (ECLA) is designed to study PL inside human body models at different frequency bands: Medical Implanted Communication Services (MICS) band (402-405 MHz), Industrial Scientific and Medical (ISM) band (2.4 2.5 GHz) and 3.5 GHz band (3.55-3.65 GHz). The ECLA has dimensions (5×5×3 mm3), (3×3×3 mm3) and (2×2×2 mm3) at MICS, ISM and 3.5 GHz respectively. ECLA performance inside human body models is studied at the allowed frequency bands. The effects of frequency bands, human model electrical properties, and distance between implants on PL are considered. Simulation results are validated with experimental work. Our results show that the ECLA at MICS band has the lowest Specific Absorption Rate (SAR) and the highest allowed input power. Also, the MICS band has the lowest PL inside the human body model, shown to be less than 90 dB in the worst case scenario.
Citation
Ali Ibraheem, and Majid Manteghi, "Intra-Body Propagation Channel Investigation Using Electrically Coupled Loop Antenna," Progress In Electromagnetics Research M, Vol. 40, 57-67, 2014.
doi:10.2528/PIERM14102110
References

1. Von Arx, J. A. and K. Najafi, "A wireless single-chip telemetry-powered neural stimulation system," 1999 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC, 214-215, 1999.

2. Khaleghi, A. and I. Balasingham, "On the ultra wideband propagation channel characterizations of the biomedical implants," IEEE 69th Vehicular Technology Conference, VTC Spring 2009, 1-4, 2009.
doi:10.1109/VETECS.2009.5073740

3. Gupta, S. K. S., S. Lalwani, Y. Prakash, E. Elsharawy, and L. Schwiebert, "Towards a propagation model for wireless biomedical applications," IEEE International Conference on Communications, ICC’ 03, Vol. 3, 1993-1997, 2003.
doi:10.1109/ICC.2003.1203948

4. Khaleghi, A., R. Chavez-Santiago, and I. Balasingham, "Ultra-wideband statistical propagation channel model for implant sensors in the human chest," IET Microwaves, Antennas & Propagation, Vol. 5, 1805-1812, 2011.
doi:10.1049/iet-map.2010.0537

5. Wang, Q., K. Masami, and J. Wang, "Channel modeling and BER performance for wearable and implant UWB body area links on chest," IEEE International Conference on Ultra-Wideband, ICUWB 2009, 316-320, 2009.
doi:10.1109/ICUWB.2009.5288734

6. Støa, S., R. Chavez-Santiago, and I. Balasingham, "An ultra wideband communication channel model for the human abdominal region," 2010 IEEE GLOBECOM Workshops (GC Wkshps), 246-250, 2010.
doi:10.1109/GLOCOMW.2010.5700319

7. Khaleghi, A., R. Chavez-Santiago, and . Balasingham, "An improved ultra wideband channel model including the frequency-dependent attenuation for in-body communications," 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1631-1634, 2012.
doi:10.1109/EMBC.2012.6346258

8. Sayrafian-Pour, K., W.-B. Yang, J. Hagedorn, J. Terrill, and K. Y. Yazdandoost, "A statistical path loss model for medical implant communication channels," 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2995-2999, 2009.
doi:10.1109/PIMRC.2009.5449869

9. Shi, J. and J. Wang, "Channel characterization and diversity feasibility for in-body to on-body communication using low-band UWB signals," 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), 1-4, 2010.
doi:10.1109/ISABEL.2010.5702784

10. De Santis, V. and M. Feliziani, "Intra-body channel characterization of medical implant devices," EMC Europe 2011 York, 816-819, 2011.

11. Alomainy, A., Y. Hao, Y. Yuan, and Y. Liu, "Modelling and characterisation of radio propagation from wireless implants at different frequencies," The 9th European Conference on Wireless Technology, 119-122, 2006.
doi:10.1109/ECWT.2006.280449

12. Manteghi, M. and A. Ibraheem, "On the study of the near-fields of electric and magnetic small antennas in lossy media," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1-6, 6491-6495, Dec. 2014.
doi:10.1109/TAP.2014.2359499

13. Manteghi, M., "Electrically coupled loop antenna as a dual for the planar inverted-F antenna," Microwave and Optical Technology Letters, Vol. 55, 1409-1412, 2013.
doi:10.1002/mop.27553

14. Ibraheem, A. and M. Manteghi, "Performance of an implanted electrically coupled loop antenna inside human body," Progress In Electromagnetics Research, Vol. 145, 195-202, 2014.
doi:10.2528/PIER14022005

15., Online: http://transition.fcc.gov/oet/rfsafety/dielectric.html.

16. Human exposure to electromagnetic fields, high frequency (10 kHz to 300 GHz), E. R. Committee, 1995.

17. In the matter of guidelines for evaluating the environmental effects of radiofrequency radiation, US Federal Communications Commission, 1996.

18. Kurup, D., W. Joseph, G. Vermeeren, and L. Martens, "In-body path loss model for homogeneous human tissues," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, 556-564, 2012.
doi:10.1109/TEMC.2011.2164803