Vol. 91
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-04-03
Tuning Electromagnetically Induced Transparency of Superconducting Metamaterial Analyzed with Equivalent Circuit Approach
By
Progress In Electromagnetics Research M, Vol. 91, 29-37, 2020
Abstract
We analyzed the effect of loss and coupling to EIT metamaterials using circuit approach, giving the effect of two parameters: coupling and loss on the resonant property of the EIT metamaterials. To verify the results of the circuit analysis, simulations and experiments were performed. The structures were fabricated with superconducting NbN and varied temperature to verify the effect of loss. The distances were adjusted to observe the effect of the coupling strength. The results of simulations and experiments were consistent with the circuit analysis.
Citation
Yonggang Zhang, Chun Li, and Xuecou Tu, "Tuning Electromagnetically Induced Transparency of Superconducting Metamaterial Analyzed with Equivalent Circuit Approach," Progress In Electromagnetics Research M, Vol. 91, 29-37, 2020.
doi:10.2528/PIERM19122101
References

1. Harris, S. E., "Electromagnetically induced transparency," Physics Today, Vol. 50, 36-42, 1997.
doi:10.1063/1.881806

2. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Review of Modern Physics, Vol. 77, 633-673, 2005.
doi:10.1103/RevModPhys.77.633

3. You, J. Q. and F. Nori, "Atomic physics and quantum optics using superconducting circuits," Nature, Vol. 474, 589-597, 2011.
doi:10.1038/nature10122

4. Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature, Vol. 397, 594-598, 1999.
doi:10.1038/17561

5. Phillips, D. F., A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Physical Review Letters, Vol. 86, 783-786, 2001.
doi:10.1103/PhysRevLett.86.783

6. Boyd, R. W. and D. J. Gauthier, "Photonics: Transparency on an optical chip," Nature, Vol. 441, No. 7094, 701-702, 2006.
doi:10.1038/441701a

7. Fedotov, V. A., M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Physical Review Letters, Vol. 99, 147401, 2007.
doi:10.1103/PhysRevLett.99.147401

8. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Physical Review Letters, Vol. 101, No. 4, 253903, 2008.
doi:10.1103/PhysRevLett.101.253903

9. Shao, J., P. Chen, R. X. Wu, et al. "Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial," Appl. Phys. Lett., Vol. 102, 034106, 2013.
doi:10.1063/1.4789432

10. Zhang, S., Dentcho A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Physical Review Letters, Vol. 101, 047401, 2008.
doi:10.1103/PhysRevLett.101.047401

11. Yanchuk, B. L., N. I. Zheludev, N. J. Halas, et al. "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater., Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810

12. Cao, W., R. Singh, I. A. Naib, et al. "Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials," Opt. Lett., Vol. 37, 3366-3368, 2012.
doi:10.1364/OL.37.003366

13. Zhu, L., L. Dong, J. Guo, et al. "Polarization-independent transparent effect in windmill-like metasurface," Journal of Physics D: Applied Physics, Vol. 51, No. 26, 2018.
doi:10.1088/1361-6463/aac560

14. Zhu, L., X. Zhao, et al. "Dual-band polarization convertor based on electromagnetically induced transparency (EIT) effect in all-dielectric metamaterial," Optics Express, Vol. 27, 12163, 2019.
doi:10.1364/OE.27.012163

15. Liu, N., H. Liu, S. N. Zhu, et al. "Stereometamaterials," Nat. Photon, Vol. 3, 157-162, 2009.
doi:10.1038/nphoton.2009.4

16. Anlage, S. M., "The physics and applications of superconducting metamaterials," Journal of Optics, Vol. 13, 024001, 2011.
doi:10.1088/2040-8978/13/2/024001

17. Ricci, M., N. Orloff, and S. M. Anlage, "Superconducting metamaterials," Applied Physics Letters, Vol. 87, 034102, 2005.
doi:10.1063/1.1996844

18. Ricci, M. C., H. Xu, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, "Tunability of superconducting metamaterials," IEEE Transactions on Applied Superconductivity, Vol. 17, 918-921, 2007.
doi:10.1109/TASC.2007.898535

19. Gu, J., R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, "Terahertz superconductor metamaterial," Applied Physics Letters, Vol. 97, 071102, 2010.
doi:10.1063/1.3479909

20. Jin, B. B., J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, "Enhanced slow light in superconducting electromagnetically induced transparency metamaterials," Supercond. Sci. Technol., Vol. 26, 074004, 2013.
doi:10.1088/0953-2048/26/7/074004

21. Jin, B. B., C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, "Low loss and magnetic field-tunable superconducting terahertz metamaterial," Optics Express, Vol. 18, 17504-17509, 2010.
doi:10.1364/OE.18.017504

22. Wu, J. B., B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, "Tuning of superconducting niobium nitride terahertz metamaterials," Optics Express, Vol. 19, 12021-12026, 2011.
doi:10.1364/OE.19.012021

23. Zhang, C. H., J. B. Wu, B. B. Jin, Z. M. Ji, L. Kang, W. W. Xu, J. Chen, M. Tonouchi, and P. H. Wu, "Low-loss terahertz metamaterial from superconducting niobium nitride films," Optics Express, Vol. 20, 42-47, 2012.
doi:10.1364/OE.20.000042

24. Zhang, Y. G., J. B. Wu, et al. "Effect of loss and coupling on the resonance of metamaterial: An equivalent circuit approach," Science China (Information Sciences), Vol. 57, 122401, 2014.

25. Prosvirnin, S., S. Zouhdi, et al. "Resonances of closed modes in thin arrays of complex particles," Advances in Electromagnetics of Complex Media and Metamaterials, 281-290, Kluwer Academic Publishers, Netherlands, 2003.

26. Tassin, P., L. Zhang, R. Zhao, et al. "Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation," Physical Review Letters, Vol. 109, No. 18, 187401, 2012.
doi:10.1103/PhysRevLett.109.187401

27. Alzar, C. L. G., M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," American Journal of Physics, Vol. 70, 37, 2002.
doi:10.1119/1.1412644

28. Zhang, Y. G., J. B. Wu, et al. "Tailoring electromagnetically induced transparency effect of terahertz metamaterials on ultrathin substrate," Science China (Information Sciences), Vol. 59, 042414, 2016.
doi:10.1007/s11432-016-5537-5