Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 91 > pp. 29-37


By Y. Zhang, C. Li, and X. Tu

Full Article PDF (357 KB)

We analyzed the effect of loss and coupling to EIT metamaterials using circuit approach, giving the effect of two parameters: coupling and loss on the resonant property of the EIT metamaterials. To verify the results of the circuit analysis, simulations and experiments were performed. The structures were fabricated with superconducting NbN and varied temperature to verify the effect of loss. The distances were adjusted to observe the effect of the coupling strength. The results of simulations and experiments were consistent with the circuit analysis.

Y. Zhang, C. Li, and X. Tu, "Tuning Electromagnetically Induced Transparency of Superconducting Metamaterial Analyzed with Equivalent Circuit Approach," Progress In Electromagnetics Research M, Vol. 91, 29-37, 2020.

1. Harris, S. E., "Electromagnetically induced transparency," Physics Today, Vol. 50, 36-42, 1997.

2. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Review of Modern Physics, Vol. 77, 633-673, 2005.

3. You, J. Q. and F. Nori, "Atomic physics and quantum optics using superconducting circuits," Nature, Vol. 474, 589-597, 2011.

4. Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature, Vol. 397, 594-598, 1999.

5. Phillips, D. F., A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Physical Review Letters, Vol. 86, 783-786, 2001.

6. Boyd, R. W. and D. J. Gauthier, "Photonics: Transparency on an optical chip," Nature, Vol. 441, No. 7094, 701-702, 2006.

7. Fedotov, V. A., M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Physical Review Letters, Vol. 99, 147401, 2007.

8. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Physical Review Letters, Vol. 101, No. 4, 253903, 2008.

9. Shao, J., et al., "Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial," Appl. Phys. Lett., Vol. 102, 034106, 2013.

10. Zhang, S., Dentcho A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Physical Review Letters, Vol. 101, 047401, 2008.

11. Yanchuk, B. L., et al., "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater., Vol. 9, 707-715, 2010.

12. Cao, W., et al., "Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials," Opt. Lett., Vol. 37, 3366-3368, 2012.

13. Zhu, L., et al., "Polarization-independent transparent effect in windmill-like metasurface," Journal of Physics D: Applied Physics, Vol. 51, No. 26, 2018.

14. Zhu, L., et al., "Dual-band polarization convertor based on electromagnetically induced transparency (EIT) effect in all-dielectric metamaterial," Optics Express, Vol. 27, 12163, 2019.

15. Liu, N., et al., "Stereometamaterials," Nat. Photon, Vol. 3, 157-162, 2009.

16. Anlage, S. M., "The physics and applications of superconducting metamaterials," Journal of Optics, Vol. 13, 024001, 2011.

17. Ricci, M., N. Orloff, and S. M. Anlage, "Superconducting metamaterials," Applied Physics Letters, Vol. 87, 034102, 2005.

18. Ricci, M. C., H. Xu, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, "Tunability of superconducting metamaterials," IEEE Transactions on Applied Superconductivity, Vol. 17, 918-921, 2007.

19. Gu, J., R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, "Terahertz superconductor metamaterial," Applied Physics Letters, Vol. 97, 071102, 2010.

20. Jin, B. B., J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, "Enhanced slow light in superconducting electromagnetically induced transparency metamaterials," Supercond. Sci. Technol., Vol. 26, 074004, 2013.

21. Jin, B. B., C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, "Low loss and magnetic field-tunable superconducting terahertz metamaterial," Optics Express, Vol. 18, 17504-17509, 2010.

22. Wu, J. B., B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, "Tuning of superconducting niobium nitride terahertz metamaterials," Optics Express, Vol. 19, 12021-12026, 2011.

23. Zhang, C. H., J. B. Wu, B. B. Jin, Z. M. Ji, L. Kang, W. W. Xu, J. Chen, M. Tonouchi, and P. H. Wu, "Low-loss terahertz metamaterial from superconducting niobium nitride films," Optics Express, Vol. 20, 42-47, 2012.

24. Zhang, Y. G., et al., "Effect of loss and coupling on the resonance of metamaterial: An equivalent circuit approach," Science China (Information Sciences), Vol. 57, 122401, 2014.

25. Prosvirnin, S., et al., "Resonances of closed modes in thin arrays of complex particles," Advances in Electromagnetics of Complex Media and Metamaterials, 281-290, Kluwer Academic Publishers, Netherlands, 2003.

26. Tassin, P., et al., "Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation," Physical Review Letters, Vol. 109, No. 18, 187401, 2012.

27. Alzar, C. L. G., M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," American Journal of Physics, Vol. 70, 37, 2002.

28. Zhang, Y. G., et al., "Tailoring electromagnetically induced transparency effect of terahertz metamaterials on ultrathin substrate," Science China (Information Sciences), Vol. 59, 042414, 2016.

© Copyright 2010 EMW Publishing. All Rights Reserved