Search Results(13665)

2006-09-17
PIER
Vol. 68, 229-246
An Efficient Modal FDTD for Absorbing Boundary Conditions and Incident Wave Generator in Waveguide Structures
Shuiping Luo and Zhizhang (David) Chen
When the finite-difference time-domain method is used to compute waveguide structures, incident waves are needed for calculating electrical parameters (e.g., the scattering parameters), and effective absorbing boundary conditions are required for terminating open waveguide structures. The incident waves are conventionally obtained with inefficient three-dimensional (3D) simulations of long uniform structures, while the absorbing boundary conditions reported so far do not perform well at or below cut-off frequencies. To address the problems, we propose a novel one-dimensional (1D) finite- difference time-domain method in this paper. Unlike the other methods developed so far, the proposed method is derived from the finite-difference time-domain formulation, and therefore has the same numerical characteristics as that of the finite-difference time-domain method. As a result, when used to obtain an incident wave, it produces results almost identical to those produced by the conventional finite- difference time-domain method except computer rounding-off errors. When used as the absorbing boundary condition, it produces reflections of less than −200 dB in entire frequency spectrum including the cut-off frequencies.
2006-09-17
PIER
Vol. 68, 197-228
Effect of Wildfire-Induced Thermal Bubble on Radio Communication
Kgakgamatso Mphale , Mal Heron and Tej Verma
Horizontal roll vortex pairs are dynamical structures that transfer energy and emissions from wildfires into the atmosphere. The vortices form at the edges of an intense line wildfire and emulate two cylinders, which form two curvatures of a biconcave thermal lens. Wildfire plume provides a dielectric material for the dielectric lens, whose permittivity is influenced by the nature, quantity of constituents (e.g., potassium and graphitic carbon) and variation of temperature with height in the plume. The environment created by the plume is radio sub-refractive with an effect of spreading radio wave beams. A numerical experiment was carried out to quantify loss of Ultra High Frequency (UHF) radio signal intensity when high intensity wildfire- induced horizontal roll vortices intercept UHF propagation path. In the numerical experiment, a collimated radio wave beam was caused to propagate along fuel-fire interface of a very high intensity wildfire in which up to two roll vortex pairs are formed. Maximum temperature of the simulated wildfire was 1200 K. Flame potassium content was varied from 0.5-3.0%. At 3.0% potassium content, a vortex pair imposed a maximum radio ray divergence of 2.1 arcmins while two vortex
2006-09-17
PIER
Vol. 65, 59-69
Numerical Analysis of a Small Ultra Wideband Microstrip-Fed Tap Monopole Antenna
Abdelnasser Eldek
This paper presents a planar microstrip-fed tab monopole antenna for ultra wideband wireless communications applications. The impedance bandwidth of the antenna is improved by adding slit in one side of the monopole,in troducing a tapered transition between the monopole and the feed line,and adding two-step staircase notch in the ground plane. Numerical analysis for the antenna dimensional parameters using Ansoft HFSS is performed and presented. The proposed antenna has a small size of 16 x 19mm,and provides an ultra wide bandwidth from 2.8 to 28 GHz with low VSWR level and good radiation characteristics to satisfy the requirements of the current and future wireless communications systems.
2006-09-17
PIER
Vol. 65, 41-58
Advancement of Algebraic Function Approximation in Eigenvalue Problems of Lossless Metallic Waveguides to Infinite Dimensions, Part II: Transfer of Results in Finite Dimensions to Infinite Dimensions
Namik Yener
In this phase of the attempt to advance finite dimensional algebraic function approximation technique in eigenvalue problems of lossless metallic guides filled with anisotropic and/or inhomogeneous media,to exact analysis in infinite dimensions,it is seen that the problem in infinite dimensions,can be reduced to finite dimensions,b y virtue of a result in perturbation theory. Furthermore,it is found that analysis results of algebraic function approximation,can be adapted to infinite dimensions too,at worst by introduction of some additional arguments.
2006-09-17
PIER
Vol. 65, 27-40
Effect of Mutual Coupling on Capacity of MIMO Wireless Channels in High SNR Scenario
Abdulla Abouda and S. Häggman
Theoretical results on the effect of antenna mutual coupling (MC) on capacity of multiple-input multiple-output (MIMO) wireless channels are presented in this paper with particular emphasis on the case of high signal to noise ratio (SNR) scenario. Two cases are considered, 1- channel capacity variations due to MC effect on correlation properties and target average receive SNR and 2- channel capacity variations due to MC effect on correlation properties at fixed average receive SNR. It is shown that the effect of MC on MIMO channel capacity can be positive or negative depending on the propagation environment spatial correlation properties and the characteristics of the transmitter and receiver MC matrices. Conditions where MC has positive and negative effects on MIMO channel capacity in the two considered cases are identified. Numerical results for half wavelength dipole antenna supporting the theoretical observations are presented.
2006-09-17
PIER
Vol. 65, 15-26
Analysis of Periodic and Aperiodic Coupled Nonuniform Transmission Lines Using the Fourier Series Expansion
Mohammad Khalaj-Amirhosseini
A general method is proposed to analyze periodic or aperiodic Coupled Nonuniform Transmission Lines (CNTLs). In this method, the per-unit-length matrices are expanded in the Fourier series. Then, the eigenvalues of periodic CNTLs and so the S parameters of aperiodic CNTLs are obtained. The validity of the method is studied using a comprehensive example.
2006-09-17
PIER
Vol. 65, 1-14
Radiation from Surface with Periodic Boundary of Metamaterials Excited by a Current
Petr Melezhik , Anatoly Poyedinchuk , Nataliya Yashina , Gerard Granet and Michel M. Ney
The rigorous modeling and analysis of electromagnetic wave transformation and radiation from the periodic boundary of metamaterial are presented. The nature of the phenomenon of resonant radiation and the influence of various parameters on it are investigated. The study is carried out with the objective of potential applications to antenna design. Simulated results show that very high directivity can be obtained and that beam steering can be achieved by adjusting proper parameters.
2006-09-15
PIER
Vol. 68, 185-196
Fast Calculation of Wide-Band Responses of Complex Radar Targets
Shaogang Wang , Xinpu Guan , Dang-Wei Wang , Xingyi Ma and Yi Su
In this paper, a fast method is proposed to calculate wide- band frequency responses of complex radar targets on a personal computer. When frequencies are low, the frequency factor can be separated from space parameters by Chebyshev polynomial approximations of Green's function. Then, matrices from MoM at different frequencies can be rapidly filled, and monostatic RCS can be soon calculated. If frequencies are relatively high, a fast high-order MoM (HO-MoM), in which matrices products are in place of multi- dimension numerical integrations, is presented. That will reduce the CPU time requirement. Lastly, Numerical results are given for various structures and compared with other available data.
2006-09-15
PIER
Vol. 68, 169-183
Two Novel Structures for Tunable MEMS Capacitor with RF Applications
Ebrahim Abbaspour-Sani , N. Nasirzadeh and Gholamreza R. Dadashzadeh
Two novel structures for high-Q MEMS tumble capacitors are presented. The proposed designs include full plate as well as the comb structured capacitors. They can be fabricated employing surface micromachining technology which is CMOS-compatible. The structures do not require the cantilever beams which introduce considerable series resistance to the capacitor and decrease the quality factor. Therefore, our proposed structures achieve better Q in a smaller die area. The simulated results for 1 pF full plate capacitor shows a tuning range of 42% and a Q of 47 at 1 GHz. However, with the same initial capacitance, but the comb structure, the tuning range is increased to 43% but the Q is decreased to 45 at 1 GHz. The simulated Pull-in voltage with no residual stress is 3.5 V for both capacitors. The S11 responses are reported for a frequency range from 1 up to 4 GHz.
2006-09-15
PIER
Vol. 68, 161-167
Circular Slot with a Novel Circular Microstrip Open Ended Microstrip Feed for UWB Applications
Fatemeh Gharakhili , Masum Fardis , Gholamreza R. Dadashzadeh , Akram Ahmadi and Nasrin Hojjat
This paper presents the study of a circular slot antenna for ultrawide-band (UWB) applications. Antenna is fed by a circular open ended microstrip line. The frequency band considered is from 4 to 14 GHz, which has approved as a commercial UWB band. The proposed antenna has a return loss less than 10 dB, phased linear, and gain flatness over the above a frequency band.
2006-09-15
PIER
Vol. 68, 151-160
Charge Moment Tensor and the Magnetic Moment of Rotational Charged Bodies
Guo-Quan Zhou
Based on the strict and delicate analogue relation between the magnetic moment of rotational charged bodies and the rotation inertia of rigid bodies, a new concept of charge moment tensor I which is different from the existent electric multiple moment is introduced in this paper. And by means of eigenvalue theory of tensor I , the concept of principal axes and principal-axis scalar charge moment are constructed, and further the scalar charge moment of a charged body and the magnetic moment of a rotational charged body around an arbitrary direction are attained. The relationship between the scalar charge moment distributive law of quadric camber and the positive or negative definiteness of tensor I are discussed. Meanwhile Some principles or theorems are extended, generalized, illustrated, and enumerated.
2006-09-15
PIER
Vol. 68, 91-111
Enhancement of Omnidirectional Reflection Bands in One-Dimensional Photonic Crystals with Left-Handed Materials
Sanjeev Srivastava and Sant Ojha
In this paper we show, theoretically, that total omnidirec- tional reflected frequency band is enlarged considerably by using one- dimensional photonic crystal (PC) structure composed of alternate lay- ers of ordinary material (OM) and left handed material (LHM). From the analysis it is found that the proposed structure has very wide range of omnidirectional total frequency bands for both polarizations in com- parison to the normal PC structure, which consists of alternate layers of ordinary material having positive index of refraction. The proposed structure also has an absolute band gap that can be exploited to trap the light.
2006-09-15
PIER
Vol. 68, 71-90
Analysis of Inductive Waveguide Microwave Components Using an Alternative Port Treatment and Efficient Fast Multipole
Francisco Perez Soler , Fernando Quesada Pereira , Juan Pascual-Garcia , David Canete Rebenaque and Alejandro Alvarez Melcon
This paper presents a simple and alternative approach for the analysis of inductive waveguide microwave components. The technique uses a surface integral equation formulation, in which the contours of the waveguide walls and of the inner obstacles are all discretized using triangular basis functions. In order to avoid the relative convergence problem of other techniques based on mode matching, an alternative port treatment is used. The technique is based on the application of the extinction theorem using the spatial representation of the Green's functions in the terminal waveguides. In addition, the Fast Multipole Method is proposed in order to reduce the computational cost for large problems. Different complex structures are analyzed, including microwave bandpass filters with elliptic transfer functions, waveguide bends and T-junctions. Results show the high accuracy and versatility of the technique derived.
2006-09-15
PIER
Vol. 68, 53-70
Time Stepping Finite Element Analysis of Broken Bars Fault in a Three-Phase Squirrel-Cage Induction Motor
Jawad Faiz , Bashir Ebrahimi and Mohammad Sharifian
Broken rotor bars and end-ring are common faults in three-phase squirrel-cage induction motors. These faults reduce the developed toque and increase the speed fluctuations of the motor. Meanwhile, developed unsymmetrical magnetic generates noise and vibration in the motor. Local heat around the broken bars may gradually break the adjacent bars and the motor will be finally out of service. Finite element method (FEM) is the most accurate technique for diagnosis and analysis of induction motor, because it can include all actual characteristics of the healthy and faulty induction motors. However, current density is generally considered as input for performance computation process, while fault can inject a large harmonics to the stator current. These harmonics may not be ignored in the fault diagnosis of the motor. In addition, all FE applications consider the steady-state mode of operation. In this paper, a three-phase voltage-fed squirrel-cage induction motor with rotor broken bars is proposed and analyzed for the starting period of the motor. Both no-load and on-load cases are considered. Also, concentrated rotor broken bars under one-pole and the distributed rotor broken bars under different poles are studied and compared.
2006-09-15
PIER
Vol. 68, 35-51
A Propagation Study of the 28 GHz Lmds System Performance with m-Qam Modulations Under Rain Fading
Kunshan Chen and Chih-Yuan Chu
In this paper, rain statistics of 10 years record in Taiwan area was used to investigate the transmission performance of the Ka- band LMDS system with QAM modulation. Emphasis was placed to investigate the effects of rain fading under M-QAM modulation schemes. It is found that for LMDS cellular network, M-QAM modulation is difficult to provide an effective and reliable high speed transmission for the case of 6 km radius of cell coverage unless the frequency and polarization diversities are applied; otherwise, the cell coverage of service should be shrunk.
2006-09-15
PIER
Vol. 68, 15-33
Rigorous Design and Efficient Optimizattion of Quarter-Wave Transformers in Metallic Circular Waveguides Using the Mode-Matching Method and the Genetic Algorithm
Mohamed Lahdi Riabi , Rawdha Thabet and Mohamed Belmeguenai
This paper presents an approach for the design and optimization of pseudo-gradual transitions in circular waveguides using the genetic algorithm (GA). The characterization of these transitions is carried out by the mode-matching method. This method, associated with the generalized scattering matrix technique, leads to determine the reflection coefficient on the useful band of the studied structures and to observe their frequential behavior. The GA is employed to optimize the choice of geometrical parameters by minimizing a cost function, corresponding to the maximum magnitude of the reflection coefficient in the band. The selection of the most relevant parameters allowed an improvement of the performances for the optimized components. Results of optimization are given for both two and four-section transformers.
2006-09-15
PIER
Vol. 68, 1-13
Propagation in a Ferrite Circular Waveguide Magnetized through a Rotary Four-Pole Magnetic Field
Mateusz Mazur , Edward Sedek and Jerzy Mazur
The coupled mode approach is applied to the ferrite circular waveguide magnetized through a rotary four-pole transverse bias magnetic fields. The plausible mathematical model of the ferrite waves propagation in the guide is developed which includes gyromagnetic interaction of two orthogonal TE11 isotropic modes. The importance of the birefringence effect in determining of phase shift and polarization phenomena are thereby demonstrated. As a result basic design consideration of the circular polarizer applied as a "half-wave plate" in rotary-field phase shifter are provided.
2006-08-29
PIER
Vol. 64, 317-333
Realization of Generalized Soft-and-Hard Boundary
Ilari Hanninen , Ismo Veikko Lindell and Ari Sihvola
The classical soft-and-hard surface boundary conditions have previously been generalized to the form a · E = 0 and b · H = 0 where a and b are two complex vectors tangential to the boundary.A realization for such a boundary is studied in terms of a slab of special wave-guiding anisotropic material. It is shown that analytic expressions can be found for the material parameters and thickness of the slab as functions of the complex vectors a and b. Application of a generalized soft-and-hard boundary as a polarization transformer is studied in detail.
2006-08-29
PIER
Vol. 64, 293-316
A Combination of Up- and Down-Going Floquet Modal Functions Used to Describe the Field Inside Grooves of a Deep Grating
Michitoshi Ohtsu , Yoichi Okuno , Akira Matsushima and Taikei Suyama
An effective computational method based on a conventional modal-expansion approach is presented for solving the problem of diffraction by a deep grating. The groove depth can be the same as or a little more than the grating period. The material can be a perfect conductor, a dielectric, or a metal. The method is based on Yasuura's modal expansion, which is known as a least-squares boundary residual method or a modified Rayleigh method. The feature of the present method is that: (1) The semi-infinite region U over the grating surface is divided into an upper half plane U0 and a groove region UG by a fictitious boundary (a horizontal line); (2) The latter is further divided into shallow horizontal layers U1, U2, ···, UQ again by fictitious boundaries; (3) An approximate solution in U0 is defined in a usual manner, i.e., a finite summation of up-going Floquet modal functions with unknown coefficients, while the solutions in Uq (q = 1, 2, ···, Q) include not only the up-going but also the down-going modal functions; (4) If the grating is made of a dielectric or a metal, the semi-infinite region L below the surface is partitioned similarly into L0, L1, ···, LQ, and approximate solutions are defined in each region; (5) A huge-sized least squares problem that appears in finding the modal coefficients is solved by the QR decomposition accompanied by sequential accumulation. The method of solution for a grating made of a perfect conductor is described in the text. The method for dielectric gratings can be found in an appendix. Numerical examples include the results for perfectly conducting and dielectric gratings.
2006-08-29
PIER
Vol. 64, 279-292
Multi-Class Optical-CDMA Network Using Optical Power Control
Naser Tarhuni , Mohammed Elmusrati and Timo Korhonenn
In this paper we use optical power control to support multirate transmission over temporal optical CDMA networks. We apply the centralized power control algorithm to set the transmit power of the users' optical sources in order to satisfy a given target QoS. In addition, optical amplifiers are included to enhance the overall system performance while the Amplified Spontaneous Emission (ASE) is considered as the main noise source. The objective function defined as the sum of the transmitted optical power from all nodes is minimized subject to a signal-to-interference (SIR) constraint. Moreover, the network feasibility, defined as the ability to evaluate a power vector that satisfy the target SIR, is discussed in terms of the spectral radius of the network interference matrix. Next, the spectral radius of the network interference matrix is investigated and modeled as a truncated Gaussian distribution. Last, a rate reduction algorithm, categorized in terms of the number of nodes involved in the process of rate reduction, is proposed to increase the network feasibility. As more nodes are added to the rate reduction campaign, the network feasibility is significantly enhanced. For typical network parameters we find by simulating 104 random network realizations that a threenode rate reduction results in 99% network feasibility.