PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 64 > pp. 117-134

ON INDEPENDENCE, COMPLETENESS OF MAXWELL'S EQUATIONS AND UNIQUENESS THEOREMS IN ELECTROMAGNETICS

By X. Zhou

Full Article PDF (160 KB)

Abstract:
In this paper, the independence, completeness of Maxwell's equations and uniqueness theorems in electromagnetics are reviewed. It is shown that the four Maxwell's equations are independent and complete. A complete uniqueness theorem is proposed and proven for the first time by pointing out logic mistakes in the existing proof and presenting a truth table. Therefore, electrostatics and magnetostatics can be reduced from dynamical electromagnetics in all aspects including not only the equations as subsets of Maxwell's equations but also the corresponding uniqueness theorems. It is concluded that the axiomatic system of electromagnetic theory must consist of all four Maxwell's equations.

Citation: (See works that cites this article)
X. Zhou, "On Independence, Completeness of Maxwell's Equations and Uniqueness Theorems in Electromagnetics," Progress In Electromagnetics Research, Vol. 64, 117-134, 2006.
doi:10.2528/PIER06061302
http://www.jpier.org/PIER/pier.php?paper=06061302

References:
1. Maxwell, J. C., A Treatise on Electricity and Magnetism, Dover Publications, Inc., 1954.

2. Stratton, J. A., Electromagnetic Theory, John Wiley & Sons, New York, 1941.

3. Arfken, G. B. and H. J. Weber, Mathematical Methods for Physicists, Academic Press, San Diego, 1995.

4. Chew, W. C., Waves and Fields in Inhomogenous Media, Van Nostrand Teinhold, New York, 1990.

5. Kong, J. A., Maxwell Equations, EMW Publishing, Cambridge, MA, 2002.

6. Feynman, R. P., R. B. Leightonand M. Sands, The Feynman Lectures on Physics, Addison-Wesley, Redwood City, CA, 1989.

7. Elliott, R. S., Electromagnetics: History, Theory, and Applications, IEEE Press, Piscataway, NJ, 1993.

8. Jackson, J. D., Classical Electrodynamics, 3rd edition, John Wiley & Sons, New York, 1998.

9. Rigden, J. S., Macmillan Encyclopedia of Physics, Simon & Schuster and Prentice Hall International, New York, 1996.

10. Pozar, D., Microwave Engineering, Addison-Wesley, Piscataway, NJ, 1993.

11. Cheng, D. K., Field and Wave Electromagnetics, Addison-Wesley Pub. Co., New York, 1989.

12. Collin, R. E., Field Theory of Guided Waves, IEEE Press, New York, 1991.

13. Schelkunoff, S. A., Electromagnetic Fields, Blaisdell Pub. Co., New York, 1963.

14. Jin, J. M., The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 1993.

15. Taflove, A., Computational Electrodynamics: The Finite- Difference Time-Domain Method, Artech House, Boston, 1995.

16. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, The Institute of Electrical Engineers, New York, 1995.

17. Kong, J. A., Electromagnetic Wave Theory, 2nd edition, Wiley, New York, 1990.

18. Cessenat, M., Mathematical Methods in Electromagnetism: Linear theory and applications, World Scientific, River Edge, NJ, 1996.

19. Someda, C. G., Electromagnetic Waves, Chapman & Hall, New York, 1998.

20. Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Academic Press, San Diego, 1998.

21. Courant, R., Methods of Mathematical Physics, Vol. 2, Vol. 2, Interscience Publisher, New York, 1962.

22. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, Pergamon Press, Oxford, 1962.

23. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 1989.

24. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, New York, 1986.

25. Losungender, E., "Maxwellschen Gleichungen," Physik. Z., Vol. 27, No. 22, 707-710, 1926.

26. Korn, G. A. and T. M. Korn, Mathematical Handbook for Scientists and Engineering (Definition, formulas, references and reviews), McGraw-Hill, New York, 1968.

27. Weisstein, E. W., CRC Concise Encyclopedia of Mathematics, CRC Press, Boca Raton, FL, 1999.

28. Wylie, C. R. and L. C. Barrett, Advanced Engineering Mathematics, McGraw-Hill, New York, 1995.

29. Knops, R. J. and L. E. Payne, Uniqueness Theorems in Linear Elasticity, Springer-Verlag, New York, 1971.

30. Keller, F. J., W. E. Gettysand M. J. Skove, Physics: Classical and Modern, McGraw-Hill, New York, 1993.

31. Solow, D., How to Read and Do Proofs: An introduction to mathematical thought processes, 2nd edition, Wiley, New York, 1990.

32. Velleman, D. J., How to Prove It: A structured approach, Cambridge University, New York, 1994.

33. Lakhtakia, A., Essays on the Formal Aspects of Electromagnetic Theory, World Scientific, River Edge, NJ, 1993.

34. Van Bladel, J., Electromagnetic Fields, Hemisphere Pub. Corp., Washington, 1965.

35. Schwartz, M., S. Green, and W. A. Rutledge, Vector Analysis, with Applications to Geometry and Physics, Harper, New York, 1960.

36. Zahn, M., Electromagnetic Field Theory: A problem solving approach, Wiley, New York, 1979.


© Copyright 2014 EMW Publishing. All Rights Reserved