PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 44 > pp. 117-135

STUDY ON THE STABILITY AND NUMERICAL ERROR OF THE FOUR-STAGES SPLIT-STEP FDTD METHOD INCLUDING LUMPED INDUCTORS

By Y.-D. Kong, Q.-X. Chu, and R.-L. Li

Full Article PDF (379 KB)

Abstract:
The stability and numerical error of the extended four-stages split-step finite-difference time-domain (SS4-FDTD) method including lumped inductors are systematically studied. In particular, three different formulations for the lumped inductor are analyzed: the explicit, the semi-implicit, and the implicit schemes. Then, the numerical stability of the extended SS4-FDTD method is analyzed by using the von Neumann method, and the results show that the proposed method is unconditionally-stable in the semi-implicit and the implicit schemes, whereas it is conditionally stable in the explicit scheme, which its stability is related to both the mesh size and the values of the element. Moreover, the analysis of the numerical error of the extended SS4-FDTD is studied, which is based on the Norton equivalent circuit. Theoretical results show that: 1) the numerical impedance is a pure imaginary for the explicit scheme; 2) the numerical equivalent circuit of the lumped inductor is an inductor in parallel with a resistor for the semi-implicit and implicit schemes. Finally, a simple microstrip circuit including a lumped inductor is simulated to demonstrate the validity of the theoretical results.

Citation:
Y.-D. Kong, Q.-X. Chu, and R.-L. Li, "Study on the Stability and Numerical Error of the Four-Stages Split-Step FDTD Method Including Lumped Inductors," Progress In Electromagnetics Research B, Vol. 44, 117-135, 2012.
doi:10.2528/PIERB12062008

References:
1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

2. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, Boston, MA, 2000.

3. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075

4. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method-," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.869007

5. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605

6. Gan, T. H. and E. L. Tan, "Stability and dispersion analysis for three-dimensional (3-D) leapfrog ADI-FDTD method," Progress In Electromagnetics Research M, Vol. 23, 1-12, 2012.
doi:10.2528/PIERM11111803

7. Sun, G. and C. W. Trueman, "Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for TEz waves," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2963-2972, Nov. 2004.
doi:10.1109/TAP.2004.835142

8. Sun, G. and C. W. Trueman, "EĀ±cient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2275-2284, May 2006.
doi:10.1109/TMTT.2006.873639

9. Rouf, H. K., F. Costen, S. G. Garcia, S. Fujino, "On the solution of 3-D frequency dependent Crank-Nicolson FDTD scheme," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2163-2175, Jan. 2009.
doi:10.1163/156939309790109261

10. Xu, K., Z. Fan, D. Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

11. Fu, , W. and E. L. Tan, "Development of split-step FDTD method with higher-order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1253, Sep. 2004.
doi:10.1049/el:20046040

12. Fu, W. and E. L. Tan, "Compact higher-order split-step FDTD method," Electron. Lett., Vol. 41, No. 7, 397-399, Mar. 2005.
doi:10.1049/el:20057927

13. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Effcient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, Sep. 2005.
doi:10.1049/el:20052381

14. Do Nascimento, V. E., J. A. Cuminato, F. L. Teixeira, and B.-H. V. Borges, "Unconditionally stable finite-difference time-domain method based on the locally-one-dimensional technique," Proc. XXII Simposio Brasileiro de Telecomunicacoes, 288-291, Campinas, SP, Brazil, Sep. 2005.

15. Liang, F. and G. Wang, "Fourth-order locally one-dimensional FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2035-2043, Jan. 2008.
doi:10.1163/156939308787538017

16. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 85-87, Feb. 2007.
doi:10.1109/LMWC.2006.890166

17. Ahmed, I. , E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally-stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544

18. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512

19. Chu, Q. X. and Y. D. Kong, "High-order accurate FDTD method based on split-step scheme for solving Maxwell's equations," Microwave. Optical Technol. Lett., Vol. 51, No. 2, 562-565, Feb. 2009.
doi:10.1002/mop.24100

20. Chu, , Q. X. and Y. D. Kong, "Three new unconditionally-Stable FDTD methods with high-order accuracy," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2675-2682, Sep. 2009.
doi:10.1109/TAP.2009.2027045

21. Kong, Y. D. and Q. X. Chu, "Unconditionally-stable FDTD methods with high-order accuracy in two and three dimensions," IET Microwaves, Antennas Propag., Vol. 4, No. 10, 1605-1616, Nov. 2010.
doi:10.1049/iet-map.2009.0222

22. Kong, Y. D. and Q. X. Chu, "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3280-3289, Sep. 2011.
doi:10.1109/TAP.2011.2161543

23. Pereda, J. A., F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, "A new algorithm for the incorporation of arbitrary linear lumped networks into FDTD simulators," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 6, 943-949, Jun. 1999.
doi:10.1109/22.769330

24. Chen, Z.-H. and Q.-X. Chu, "FDTD modeling of arbitrary linear lumped networks using piecewise linear recursive convolution technique," Progress In Electromagnetics Research, Vol. 73, 327-341, 2007.
doi:10.2528/PIER07042002

25. Su, D. Y., D.-M. Fu, and Z.-H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, Vol. 80, 381-392, 2008.
doi:10.2528/PIER07120902

26. Silva-Macedo, J. A., M. A. Romero, and B.-H. V. Borges, "An extended FDTD method for the analysis of electromagnetic field rotators and cloaking devices," Progress In Electromagnetics Research, Vol. 87, 183-196, 2008.
doi:10.2528/PIER08101507

27. Thiel, W. and L. P. B. Katehi, "Some aspects of stability and numerical dissipation of the finite-difference time-domain (FDTD) technique including passive and active lumped elements," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 9, 2159-2165, Sep. 2002.
doi:10.1109/TMTT.2002.802330

28. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements --- A new perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901

29. Pereda, J. A. , A. Vegas, and A. Prieto, "Study on the stability and numerical dispersion of the FDTD technique including lumped inductors," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 1052-1058, Mar. 2004.
doi:10.1109/TMTT.2004.823589

30. Fu, W. and E. L. Tan, "Unconditionally stable FDTD technique including passive lumped elements," International RF and Microwave Conference Proceedings, 277-280, Putrajaya,Malaysia, Sep. 2006.

31. Fu, W. and E. L. Tan, "Unconditionally stable ADI-FDTD method including passive lumped elements," IEEE Trans. , Vol. 48, No. 4, 661-668, Nov. 2006.

32. Chu, Q. X. and Z. H. Chen, "Numerical dispersion of the ADI-FDTD technique including lumped models," IEEE MTT-S Int. Mcro. Sym. Dig., 729-732, Honolulu, Unite States, Jun. 2007.

33. Lin, G. and Y. G. Zhou, "Extending the three-dimensional LOD-FDTD method to lumped load and voltage source with impedance," International Conference on Microwave Technology and Computational Electromagnetics, 341-343, Beijing, China,2009.

34. Lee, J. and B. Fornberg, "A split step approach for the 3-D Maxwell's equations," J. Comput. Appl. Math., Vol. 158, 485-505, Mar. 2003.
doi:10.1016/S0377-0427(03)00484-9

35. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 2, 377-381, Feb. 2001.
doi:10.1109/22.903100


© Copyright 2010 EMW Publishing. All Rights Reserved