PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 3 > pp. 195-202

SMALL SIZE EDGE-FED SIERPINSKI CARPET MICROSTRIP PATCH ANTENNAS.DOC

By W.-L. Chen and G.-M. Wang

Full Article PDF (443 KB)

Abstract:
In this paper, we present a novel technique to reduce the size of edge-fed microstrip patch antenna. By etching the patch as the Sierpinski carpet, the resonant frequency can be lowered to lower values, and this property can be employed to reduce the size of the conventional patch antenna. The measurement results show, the patch achieved a maximum 33.9% size reduction by the edge-fed Sierpinski Carpet microstrip patch antenna (SCMPA) of the second iteration order, and other performances, such as return loss bandwidth and radiation patterns, were virtually unchanged.

Citation:
W.-L. Chen and G.-M. Wang, "Small Size Edge-Fed Sierpinski Carpet Microstrip Patch Antennas.Doc," Progress In Electromagnetics Research C, Vol. 3, 195-202, 2008.
doi:10.2528/PIERC08050302

References:
1. Lo, T. K. and Y. Hwang, "Microstrip antennas of very high permittivity for personal communications," 1997 Asia-Pacific Microwave Conference, 253-256, 1997.

2. Wong, K.-L., "Compact and Broadband Microstrip Antennas," John Wiely & Sons Inc., 1-7, 2002.

3. Herscovici, N., et al., "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 94-97, 2002.
doi:10.1109/LAWP.2002.805128

4. Reed, S., L. Desclos, C. Terret, and S. Toutain, "Size reduction of a patch antenna by means of inductive loads," Microwave and Optical Technology Letters, Vol. 29, No. 2, 79-81, 2001.
doi:10.1002/mop.1089

5. Desclos, L., Y. Mahe, S. Reed, G. Poilasne, and S. Toutain, "Patch antenna size reduction by combining inductive loading and short-points technique," Microwave and Optical Technology Letters, Vol. 30, No. 6, 385-386, 2001.
doi:10.1002/mop.1322

6. Desclos, L., "Size reduction of patch by means of slots insertion," Microwave and Optical Technology Letters, Vol. 25, No. 2, 111-113, 2000.
doi:10.1002/(SICI)1098-2760(20000420)25:2<111::AID-MOP8>3.0.CO;2-S

7. Leon, G., R. R. Boix, and F. Medina, "A comparison among different reduced-size resonant microstrip patches," Microwave and Optical Technology Letters, Vol. 29, No. 3, 143-146, 2001.
doi:10.1002/mop.1110

8. Kim, I.-K., J.-G. Yook, and H.-K. Park, "Fractal-shape small size microstrip antenna," Microwave and Optical Technology Letters, Vol. 34, No. 1, 15-17, 2002.
doi:10.1002/mop.10359

9. Guterman, J., A. A. Moreira, and C. Peixeiro, "Microstrip fractal antennas for multistandard terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 351-354, 2004.
doi:10.1109/LAWP.2004.840253

10. Gianviffwb, J. P. and R.-S. Yahya, "Fractal antennas: A novel antenna miniaturization technique and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, 2002.
doi:10.1109/74.997888

11. Rahim, M. K. A., N. Abdullah, and M. Z. A. Aziz, "Microstrip Sierpinski carpet antenna design," 2005 Asia-Pacific Conference on Applied Electromagnetics Proceedings, 58-61, 2005.
doi:10.1109/APACE.2005.1607774

12. Ooi, B.-L., "A modified contour integral analysis for Sierpinski fractal carpet antennas with and without electromagnetic band gap ground plane," IEEE Trans. Antennas and Propagation, Vol. 52, No. 5, 1286-1293, 2004.
doi:10.1109/TAP.2004.827245


© Copyright 2010 EMW Publishing. All Rights Reserved