PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 10 > pp. 1-13

PERFORMANCE AND COMPLEXITY IMPROVEMENT OF TRAINING BASED CHANNEL ESTIMATION IN MIMO SYSTEMS

By M. W. Numan, M. T. Islam, and N. Misran

Full Article PDF (259 KB)

Abstract:
Multiple-input multiple-output (MIMO) systems play a vital role in fourth generation wireless systems to provide advanced data rate. In this paper, a better performance and reduced complexity channel estimation method is proposed for MIMO systems based on matrix factorization. This technique is applied on training based least squares (LS) channel estimation for performance improvement. Experimentation results indicate that the proposed method not only alleviates the performance of MIMO channel estimation but also significantly reduces the complexity caused by matrix inversion. The performance evaluations are validated through computer simulations using MATLAB® 7.0 in terms of bit error rate (BER). Simulation results show that the BER performance and complexity of the proposed method clearly outperforms the conventional LS channel estimation method.

Citation:
M. W. Numan, M. T. Islam, and N. Misran, "Performance and Complexity Improvement of Training Based Channel Estimation in MIMO Systems," Progress In Electromagnetics Research C, Vol. 10, 1-13, 2009.
doi:10.2528/PIERC09071505

References:
1. Abouda, A. A. and S. G. HÄaggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.2528/PIER06072803

2. Abouda, A. A., H. M. El-Sallabi, and S. G. HÄaggman, "Effect of antenna array geometry and ULA azimuthal orientation on MIMO channel properties in urban city street grid," Progress In Electromagnetics Research, Vol. 64, 257-278, 2006.
doi:10.2528/PIER06050801

3. Paulraj, J., D. A. Gore, R. U. Nabar, and H. Bolcskei, "An overview of MIMO communications --- A key to gigabit wireless," Proceedings of the IEEE, Vol. 92, No. 2, 198-218, Feb. 2004.
doi:10.1109/JPROC.2003.821915

4. Wang, H. M., X. Q. Gao, B. Jiang, X. H. You, and W. Hong, "E±cient MIMO channel estimation using complementary sequences," IET Communications, Vol. 1, 962-969, Oct. 2007.

5. Ma, X., L. Yang, and G. B. Giannakis, "Optimal training for MIMO frequency-selective fading channels," IEEE Trans. Wireless Commun., Vol. 4, No. 2, 453-466, Mar. 2005.
doi:10.1109/TWC.2004.842998

6. Zhang, J., Z. He, and Y. Huang, "TSK fuzzy approach to channel estimation for MIMO-OFDM systems," IEEE Signal Process. Lett., Vol. 14, No. 6, 381-384, Jun. 2007.
doi:10.1109/LSP.2006.887847

7. Chen, R., H. Zhang, Y. Xu, and H. Luo, "On MM-type channel estimation for MIMO OFDM systems," IEEE Trans. Wireless Commun., Vol. 6, No. 3, 1046-1055, May 2007.
doi:10.1109/TWC.2007.05452

8. Van De Beek, J.-J., O. Edfors, M. Sandell, S. K. Wilson, and P. O. BÄorjesson, "On channel estimation in OFDM systems," Proc. IEEE Int. Veh. Technol. Conf., Chicago, Jul. 1995.

9. Sorrentino, S., D. Greco, and L. Reggiani, "Least squares channel estimation for IEEE 802.16e systems based on adaptive taps selection," Proc. IEEE Int. Veh. Technol. Conf., May 2008.

10. Golub, G. H. and C. F. Van Loan, Matrix Computations, 3rd Ed., John Hopkins University Press, Maryland, 1996.

11. WÄubben, D., J. Rinas, R. BÄohnke, V. KÄuhn, and K. D. Kammeyer, "E±cient algorithm for decoding layered space-time codes," Electron. Lett., Vol. 37, No. 22, 1348-1350, Oct. 2001.
doi:10.1049/el:20010899

12. Pham, V., M. Le, L. Mai, and G. Yoon, "\Low complexity maximum-likelihood decoder for VBLAST-STBC scheme in MIMO wireless communication systems," IEEE 63rd Vehicular Technology Conference, 2006, Vol. 5, 2309-2313, May 2006.
doi:10.1109/VETECS.2006.1683269

13. Guo, Z., Y. Wang, L. Li, X. Tao, P. Zhang, and H. Harada, "A hybrid detection algorithm for MIMO systems ," International Conference on Communications, Circuits and Systems Proceedings 2006, Vol. 2, 883-887, Jun. 2006.
doi:10.1109/ICCCAS.2006.284793

14. Noh, S., symbolY. Jung, S. Lee, and J. Kim, "Low-complexity detector for MIMO-OFDM-based wireless LANs," IEEE Trans. Circuits Syst. II: Exp. Briefs, Vol. 53, 1403-1407, Dec. 2006.
doi:10.1109/TCSII.2006.884122

15. Larsson, E. G. and P. Stoica, Space-time Block Coding for Wireless Communications, Cambridge Univ. Press, Cambridge, 2003.

16. Gesbert, D., M. Shafi, D. Shiu, P. J. Smith, and A. Naguib, "From theory to practice: An overview of MIMO space-time coded wireless systems," IEEE J. Select. Areas Commun., Vol. 21, No. 3, 281-302, Apr. 2003.
doi:10.1109/JSAC.2003.809458

17. Alamouti, S. M., "A simple transmit diversity technique for wireless communications," IEEE J. Select. Areas Commun., Vol. 16, 1451-1458, Oct. 1998.

18. Tarokh, V., H. Jafarkhani, and A. R. Calderbank, "Space-time block codes from orthogonal designs," IEEE Transactions on Information Theory, Vol. 45, No. 5, 1456-1467, Jul. 1999.
doi:10.1109/18.771146

19. Naguib, A. F., V. Tarokh, N. Seshadri, and A. R. Calderbank, "A spacetime coding modem for high data rate wireless communications," IEEE J. Select. Areas Commun., Vol. 16, No. 8, 1451-1458, 1998.
doi:10.1109/49.730454

20. Haykin, S., Adaptive Filter Theory, 4th Ed., Prentice Hall, New Jersey, 2002.


© Copyright 2010 EMW Publishing. All Rights Reserved