PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 43 > pp. 93-108

DESIGN AND CHARACTERIZATION OF AN EFFICIENT DUAL PATCH RECTENNA FOR MICROWAVE ENERGY RECYCLING IN THE ISM BAND

By H. Takhedmit, L. Cirio, O. Picon, C. Vollaire, B. Allard, and F. Costa

Full Article PDF (962 KB)

Abstract:
This paper describes the design, modeling and optimization of an efficient ISM band dual patch rectenna capable of achieving more than 80% RF-to-DC conversion efficiency at low/medium power densities. The circuit is based on a full-wave rectifier, designed and optimized at 2.45 GHz with ADS software and the FDTD algorithm. The performances of the rectenna have been accurately predicted using the full-wave 3D-FDTD method extended to lumped linear and non-linear elements. It exhibits 73% (<VDC = 1.1 V for RL= 1.2 kΩ) measured efficiency at a low power density of 14 μW/cm2 and 84% (VDC = 1.94 V) at 43 μW/cm2. The differences between the experimental and FDTD simulated efficiencies are less than 3%. The proposed circuit is particularly suitable for low/medium power recycling and power remote supply of wireless sensors, sensor nodes and actuators.

Citation:
H. Takhedmit, L. Cirio, O. Picon, C. Vollaire, B. Allard, and F. Costa, "Design and Characterization of an Efficient Dual Patch Rectenna for Microwave Energy Recycling in the ISM Band," Progress In Electromagnetics Research C, Vol. 43, 93-108, 2013.
doi:10.2528/PIERC13073105

References:
1. Brown, W. C., "The history of power transmission by radio waves," IEEE Trans. Microw. Theory and Tech., Vol. 32, No. 9, 1230-1242, Sep. 1984.
doi:10.1109/TMTT.1984.1132833

2. Ren, Y. J. and K. Chang, "5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission," IEEE Trans. Microw. Theory and Tech.,, Vol. 54, No. 4, 1495-1502, Nov. 2008.

3. Douyere, A., J. D. Lan, S. Luk, and F. Alicalapa, "High efficiency microwave rectenna circuit: Modeling and design," Electronics Letters, Vol. 44, No. 24, Nov. 2008.

4. Zbitou, J., M. Latrach, and S. Toutain, "Hybrid rectenna and monolithic integrated zero-bias microwave rectifier," IEEE Trans. Microw. Theory and Tech., Vol. 54, No. 1, 147-152, Jan. 2006.
doi:10.1109/TMTT.2005.860509

5. Strassner, B. and K. Chang, "5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission,", Vol. 50, No. 8, 1870-1876, Aug. 2002.
doi:10.1109/TMTT.2002.801312

6. Heikkinen, J. and M. Kivikoski, "Low-profile circularly polarized rectifying antenna for wireless power transmission at 5.8 GHz," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 4, 162-164, Apr. 2004.
doi:10.1109/LMWC.2004.827114

7. Heikkinen, J. and M. Kivikoski, "A novel dual-frequency circularly polarized rectenna," IEEE Antennas Wireless Propag. Lett., Vol. 2, 330-333, 2003.
doi:10.1109/LAWP.2004.824166

8. Akkermans, J. A. G., M. C. van Beurden, G. J. N. Doodeman, and H. J. Visser, "Analytical models for low-power rectenna design," IEEE Antennas Wireless Propag. Lett., Vol. 4, 187-190, 2005.
doi:10.1109/LAWP.2005.850798

9. Takhedmit, H., B. Merabet, L. Cirio, B. Allard, F. Costa, C. Vollaire, and O. Picon, "Design of a 2.45 GHz rectenna using a global analysis technique," Proceed. of the 3rd European Conference on Antennas and Propagation, EuCAP 2009, 2321-2325, Berlin, Germany, Mar. 23-27, 2009.

10. Marian, V., C. Vollaire, J. Verdier, and B. Allard, "An alternative energy source for low power autonomous sensors," Proceed. of the 5th European Conference on Antennas and Propagation, EuCAP 2011, 405-409, Rome, Italy, Apr. 11-15, 2011.

11. Ahn, C.-H., S.-W. Oh, and K. Chang, "A high gain rectifying antenna combined with reflectarray for 8 GHz wireless power ," IEEE International Symposium on Antennas and Propagation, APSURSI 2009, 1-4, Charleston, USA, Jun. 1-5, 2009.

12. Olgun, U., C.-C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced RF power investigation," IEEE Antennas Wireless Propag. Lett., Vol. 10, 262-265, 2011.
doi:10.1109/LAWP.2011.2136371

13. Epp, L. W., A. R. Khan, H. K. Smith, and R. P. Smith, "A compact dual-polarized 8.51-GHz rectenna for high-voltage (50 V) actuator applications," IEEE Trans. Microw. Theory and Tech., Vol. 48, No. 1, 111-119, Jan. 2000.
doi:10.1109/22.817479

14. Takhedmit, H., L. Cirio, B. Merabet, B. Allard, F. Costa, C. Vollaire, and O. Picon, "A 2.45-GHz dual-diode rectenna and rectenna arrays for wireless remote supply applications," Intern. Journ. of Microw. and Wireless Technolog., Vol. 3, Special issue 3, 251-258, Jun. 2011.

15. Monti, G., L. Corchia, and L. Tarricone, "ISM band rectenna using a ring loaded monopole," Progress In Electromagnetics Research C, Vol. 33, 1-15, 2012.

16. Monti, G. and F. Congedo, "UHF rectenna using a bowtie antenna," Progress In Electromagnetics Research C, Vol. 26, 181-192, 2012.
doi:10.2528/PIERC11102706

17. Falkenstein, E., M. Roberg, and Z. Popovic, "Low-power wireless power delivery," IEEE Trans. Microw. Theory and Tech., Vol. 60, No. 7, 2277-2286, Jul. 2012.
doi:10.1109/TMTT.2012.2193594

18. Farinholt, K. M., G. Park, and C. R. Farrar, "RF energy transmission for low-power wireless impedance sensor node," IEEE Sensors Journal, Vol. 9, No. 7, 793-800, Jul. 2009.
doi:10.1109/JSEN.2009.2022536

19. , , , Advanced Design System software, Agilent Technologies, 2000-2013, Available: http://www.home.agilent.com/.

20. , , , HSMS-286x, HSMS-282x series, Surface Mount Microwave Schottky Detector Diodes, 2001, Available: http://www.avagotech.com/.

21. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Edition, John Wiley & Sons, Inc., 2005.
doi:10.1109/22.127522

22. Taflove, A. and S. C. Hagness, Computational electrodynamics - The finite difference time domain method, 3rd Edition, Artech House Inc., 2005.
doi:10.1109/75.248520

23. Sui, W., D. A. Christensen, and C. H. Durney, "Extending the two dimensional FD-TD method to hybrid electromagnetic systems with active and passive lumped elements," IEEE Trans. Microw. Theory and Tech., Vol. 40, 724-730, 1992.
doi:10.1109/75.491504

24. Toland, B., B. Houshmand, and T. Itoh, "FDTD analysis of an active antenna," IEEE Microwave and Guided Wave Letters, Vol. 3, No. 11, 423-425, Nov. 1993.
doi:10.1109/22.575606

25. Kuo, C.-N., R.-B. Wu, B. Houshmand, and T. Itoh, "Modeling of microwave active devices using the fdtd analysis based on the voltage-source approach," IEEE Microwave and Guided Wave Letters, Vol. 6, No. 5, 199-201, May 1996.
doi:10.1049/el.2010.1075

26. Kuo, C.-N., B. Houshmand, and T. Itoh, "Full-wave analysis ok packaged microwave circuits with active and nonlinear devices: an FDTD approach," IEEE Trans. Microw. Theory and Tech., Vol. 45, No. 5, 819-826, May 1997.

27. Takhedmit, H., L. Cirio, B. Merabet, B. Allard, F. Costa, C. Vollaire, and O. Picon, "Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device," Electronics Letters, Vol. 46, No. 12, 811-812, Jun. 10th, 2010.
doi:10.1109/8.546249

28. Umashankar, K. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Trans. on Electromagnetic Compatibility, Vol. 24, No. 4, 397-405, Nov. 1982.

29. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propagation, Vol. 44, No. 12, 1630-1639, Dec. 1996.


© Copyright 2010 EMW Publishing. All Rights Reserved