PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 56 > pp. 1-13

DEVELOPMENT OF AN EQUIVALENT CIRCUIT MODEL OF A FINITE GROUND COPLANAR WAVEGUIDE INTERCONNECT IN MIS SYSTEM FOR ULTRA-BROADBAND MONOLITHIC ICS

By M. A. Ehsan, Z. Zhou, and Y. Yi

Full Article PDF (463 KB)

Abstract:
An equivalent circuit model of a finite ground plane coplanar waveguide (FGCPW) interconnect in a metal-insulator-semiconductor (MIS) system for an ultra-broadband monolithic IC is proposed and illustrated. An effective substrate considering Maxwell-Wagner Polarization is suggested and demonstrated. The method of modeling the weak skin effect of the conductor is presented. The accuracy of the equivalent circuit model is evaluated. This proposed FGCPW interconnect equivalent circuit model enables a quick and efficient time domain simulation to estimate the time delay and bandwidth of the ultra-broadband ICs.

Citation:
M. A. Ehsan, Z. Zhou, and Y. Yi, "Development of an Equivalent Circuit Model of a Finite Ground Coplanar Waveguide Interconnect in MIS System for Ultra-Broadband Monolithic ICs ," Progress In Electromagnetics Research C, Vol. 56, 1-13, 2015.
doi:10.2528/PIERC14100805

References:
1. Milanovic, V., M. Ozgur, D. C. Degroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, "Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates," IEEE Trans. Microwave Theory and Techniques, Vol. 46, No. 5, 632-640, May 1998.
doi:10.1109/22.668675

2. Tran, L. N., D. Pasquet, E. Bourdel, and S. Quintanel, "CAD-oriented model of a coplanar line on a silicon substrate including Eddy-current effects and skin effect," IEEE Trans. Microwave Theory and Techniques, Vol. 56, No. 3, 663-670, Mar. 2008.
doi:10.1109/TMTT.2008.916941

3. Vecchi, F., M. Repossi, W. Eyssa, P. Arcioni, and F. Svelto, "Design of low-loss transmission lines in scaled CMOS by accurate electromagnetic simulations," IEEE Journal of Solid-State Circuits, Vol. 44, No. 9, 2605-2615, Sep. 2009.
doi:10.1109/JSSC.2009.2023277

4. Sayan, A., D. Ritter, and D. Goren, "Compact modeling and comparative analysis of silicon-chip slow-wave transmission lines with slotted bottom metal ground planes," IEEE Trans. Microwave Theory and Techniques, Vol. 57, No. 4, 840-847, Apr. 2009.
doi:10.1109/TMTT.2009.2015041

5. Benevent, E., B. Viala, and J.-P. Michel, "Analytical modeling of multilayered coplanar waveguides including ferromagnetic thin films on semiconductor substrates," IEEE Trans. Microwave Theory and Techniques, Vol. 58, No. 3, 645-650, Mar. 2010.
doi:10.1109/TMTT.2010.2040336

6. Long, J. R., Y. Zhao, W. Wu, M. Spirito, L. Vero, and E. Gordon, "Passive circuit technologies for mm-wave wireless systems on silicon," IEEE Trans. Circuit and Systems, Vol. 59, No. 8, 1680-1693, Aug. 2012.
doi:10.1109/TCSI.2012.2206499

7. Ansoft HFSS, www.ansys.com, .
doi:10.1109/TCSI.2012.2206499

8. Tsang, L. and X. Chang, "Modeling of vias sharing the same antipad in planar waveguide with boundary integral equation and group T-matrix method," IEEE Trans. Components, Packaging and Manufacturing Tech., Vol. 3, No. 2, 315-327, Feb. 2013.
doi:10.1109/TCPMT.2012.2220771

9. Chang, X. and L. Tsang, "Fast and broadband modeling method for multiple vias with irregular antipad in arbitrarily shaped power/ground planes in 3-D IC and packaging based on generalized foldy-lax Equations," IEEE Trans. Components, Packaging and Manufacturing Tech., Vol. 4, No. 4, 685-696, Apr. 2014.
doi:10.1109/TCPMT.2013.2290897

10. Wu, B. and L. Tsang, "Signal integrity analysis of package and printed board with multiple vias in substrate of layered dielectrics," IEEE Trans. Advanced Packaging, Vol. 33, No. 2, May 2010.

11. Hasengawa, H., M. Furukawa, and Hisayoshi, "Properties of microstrip line on Si-SiO2 system," IEEE Trans. Microwave Theory and Techniques, Vol. 19, No. 11, 869-881, Nov. 1971.
doi:10.1109/TMTT.1971.1127658

12. Shibata, T. and E. Sano, "Characterization of MIS structure coplanar transmission lines for investigation of signal propagation in integrated circuits," IEEE Trans. Microwave Theory and Techniques, Vol. 38, No. 7, 881-890, Jul. 1990.
doi:10.1109/22.55780

13. Lee, H.-Y. and T. Itoh, "Phenomenological loss equivalent method for planar quasi-TEM transmission line with a thin normal conductor or supperconductor," IEEE Trans. Microwave Theory and Techniques, Vol. 37, No. 12, 1904-1909, Dec. 1989.
doi:10.1109/22.44101

14. Prodromakis, T. and C. Papavassiliou, "Engineering the Maxwell-Wagner polarization effect," Applied Surface Science, Vol. 255, No. 15, 6989-6994, May 2009.
doi:10.1016/j.apsusc.2009.03.030

15. Simons, R. N., Coplanar Waveguide, Circuits,Components, and Systems, John Wiley and Sons Inc., 2001.
doi:10.1002/0471224758

16. Collin, R. E., Foundations for Microwave Engineering (IEEE Press Serios on Electromagnetics Wave Theory), Wiley-IEEE Press, 1992.

17. Heinrich, W., "Quasi-TEM description of MMIC coplanar line including concutor loss effects," IEEE Trans. Microwave Theory and Techniques, Vol. 41, No. 1, 45-52, Jul. 1993.
doi:10.1109/22.210228

18. Hall, S. H. and H. L. Heck, Advanced Signal Integrity for High-speed Digital Design, John Wiley and Sons Inc., 2009.
doi:10.1002/9780470423899

19., , www.ggb.com.

20. Riaziat, M., R. Majidi-Ahy, and I.-J. Feng, "Propagation modes and dispersion characteristics of coplanar waveguides," IEEE Trans. Microwave Theory and Techniques, Vol. 38, No. 3, 245-251, Mar. 1990.
doi:10.1109/22.45333


© Copyright 2010 EMW Publishing. All Rights Reserved