Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 66 > pp. 77-85


By D. Bychanok, G. Gorokhov, D. Meisak, A. Plyushch, P. Kuzhir, A. Sokal, K. Lapko, A. Sanchez-Sanchez, V. Fierro, A. Celzard, C. Gallagher, A. P. Hibbins, F. Y. Ogrin, and C. Brosseau

Full Article PDF (257 KB)

We report the modelling and characterization of microwave absorbing materials specially designed for 26-37 GHz frequency range (Ka-band). Composite materials based on carbon nanotubes/BaTiO3/Fe3O4 in a phosphate ceramic matrix were produced, and their electromagnetic response was investigated. Both theoretical and experimental results demonstrate that this material can absorb up to 100% of the power of an incident plane wave at a normal incidence angle. The physics underlying such absorption level is discussed in terms of refractive index of the material.

D. Bychanok, G. Gorokhov, D. Meisak, A. Plyushch, P. Kuzhir, A. Sokal, K. Lapko, A. Sanchez-Sanchez, V. Fierro, A. Celzard, C. Gallagher, A. P. Hibbins, F. Y. Ogrin, and C. Brosseau, "Exploring Carbon Nanotubes/BaTiO3 /Fe3O4 Nanocomposites as Microwave Absorbers," Progress In Electromagnetics Research C, Vol. 66, 77-85, 2016.

1. Qiang, C., J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, and P. Xu, "Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles," Journal of Alloys and Compounds, Vol. 506, 93-97, 2010.

2. Tsay, C. Y., R. B. Yang, D. S. Hung, Y. H. Hung, Y. D. Yao, and C. K. Lin, "Investigation on electromagnetic and microwave absorbing properties of La0.7Sr0.3MnO3-d/carbon nanotube composites," Journal of Applied Physics, Vol. 107, 09A502, 2010.

3. Danlee, Y., I. Huynen, and C. Bailly, "Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes," Applied Physics Letters, Vol. 100, 213105, 2012.

4. Duan, M. C., L. M. Yu, L. M. Sheng, K. An, W. Ren, and X. L. Zhao, "Electromagnetic and microwave absorbing properties of SmCo coated single-wall carbon nanotubes/NiZn-ferrite nanocrystalline composite," Journal of Applied Physics, Vol. 115, 174101, 2014.

5. Kim, S.-T. and S.-S. Kim, "Microwave absorbing properties of hollow microspheres plated with magnetic metal films," Journal of Applied Physics, Vol. 115, 17A528, 2014.

6. El-Hakim, H. A., K. R. Mahmoud, and A. Abdelaziz, "Design of compact double-layer microwave absorber for X-Ku bands using genetic algorithm," Progress In Electromagnetics Research B, Vol. 65, 157-168, 2016.

7. Zhuravlev, V., V. Suslyaev, E. Korovin, and K. Dorozhkin, "Electromagnetic waves absorbing characteristics of composite material containing carbonyl iron particles," Materials Sciences and Applications, Vol. 5, 803-811, 2014.

8. Ipatov, M., V. Zhukova, L. V. Panina, and A. Zhukov, "Ferromagnetic microwires composite metamaterials with tuneable microwave electromagnetic parameters," PIERS Proceedings, Vol. 5, 586-590, Beijing, China, March 23–27, 2009.

9. Zivkovic, I. and A. Murk, "Characterization of magnetically loaded microwave absorbers," Progress In Electromagnetics Research B, Vol. 33, 277-289, 2011.

10. Bychanok, D., S. Li, A. Sanchez-Sanchez, G. Gorokhov, P. Kuzhir, F. Ogrin, A. Pasc, T. Ballweg, K. Mandel, A. Szczurek, V. Fierro, and A. Celzard, "Hollow carbon spheres in microwaves: Bioinspired absorbing coating," Applied Physics Letters, Vol. 108, 013701, 2016.

11. Cao, M.-S., W.-L. Song, Z.-L. Hou, B.Wen, and J. Yuan, "The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites," Carbon, Vol. 48, 788-796, 2010.

12. Sarto, M. S., A. G. D’Aloia, A. Tamburrano, and G. De Bellis, "Synthesis, modeling, and experimental characterization of graphite nanoplatelet-based composites for EMC applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, 17-27, 2012.

13. Buchner, R., J. Barthel, and J. Stauber, "The dielectric relaxation of water between 0◦C and 35◦C," Chemical Physics Letters, Vol. 306, 57-63, 1999.

14. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," Photonics Journal, Vol. 1, 99-118, 2009.

15. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," Journal of Applied Physics, Vol. 111, 061301–24, 2012.

16. Brosseau, C., P. Molinie, F. Boulic, and F. Carmona, "Mesostructure, electron paramagnetic resonance, and magnetic properties of polymer carbon black composites," Journal of Applied Physics, Vol. 89, 8297-8310, 2001.

17. Bychanok, D., P. Kuzhir, S. Maksimenko, S. Bellucci, and C. Brosseau, "Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave," Journal of Applied Physics, Vol. 113, 124103–6, 2013.

18. Kuzhir, P., A. Paddubskaya, D. Bychanok, A. Nemilentsau, M. Shuba, A. Plusch, S. Maksimenko, S. Bellucci, L. Coderoni, F. Micciulla, I. Sacco, G. Rinaldi, J. Macutkevic, D. Seliuta, G. Valusis, and J. Banys, "Microwave probing of nanocarbon based epoxy resin composite films: Toward electromagnetic shielding," Thin Solid Films, Carbon- or Nitrogen-containing Nanostructured Composite Films, Vol. 519, 4114-4118, 2011.

19. Apanasevich, N., A. Sokal, K. Lapko, A. Kudlash, V. Lomonosov, A. Plyushch, P. Kuzhir, J. Macutkevic, J. Banys, and A. Okotrub, "Phosphate ceramics — Carbon nanotubes composites: Liquid aluminum phosphate vs solid magnesium phosphate binder," Ceramics International, Vol. 41, 12147-12152, 2015.

20. Kanygin, M. A., O. V. Sedelnikova, I. P. Asanov, L. G. Bulusheva, A. V. Okotrub, P. P. Kuzhir, A. O. Plyushch, S. A. Maksimenko, K. N. Lapko, A. A. Sokol, O. A. Ivashkevich, and P. Lambin, "Effect of nitrogen doping on the electromagnetic properties of carbon nanotube-based composites," Journal of Applied Physics, Vol. 113, 144315, 2013.

21. Plyushch, A., D. Bychanok, P. Kuzhir, S. Maksimenko, K. Lapko, A. Sokol, J. Macutkevic, J. Banys, F. Micciulla, A. Cataldo, and S. Bellucci, "Heat-resistant unfired phosphate ceramics with carbon nanotubes for electromagnetic application," Phys. Status Solidi A, Vol. 211, 2580-2585, 2014.

22. Plyushch, A. O., A. A. Sokol, K. N. Lapko, P. P. Kuzhir, Y. V. Fedoseeva, A. I. Romanenko, O. B. Anikeeva, L. G. Bulusheva, and A. V. Okotrub, "Electromagnetic properties of phosphate composite materials with boron-containing carbon nanotubes," Physics of the Solid State, Vol. 56, 2537-2542, 2014.

23. Gaylor, K., "Radar absorbing materials-mechanisms and materials," Materials Research Labs Ascot Vale (Australia), No. MRL-TR-89-1, 1989.

24. Baker-Jarvis, J., M. Janezic, J. J. Grosvenor, and R. Geyer, "Transmission/reflection and shortcircuit line methods for measuring permittivity and permeability," NIST Technical Note, 1355, 1993.

25. Bychanok, D., A. Plyushch, K. Piasotski, A. Paddubskaya, S. Voronovich, P. Kuzhir, S. Baturkin, A. Klochkov, E. Korovin, M. Letellier, S. Schaefer, A. Szczurek, V. Fierro, and A. Celzard, "Electromagnetic properties of polyurethane template-based carbon foams in Ka-band," Physica Scripta, Vol. 90, 094019, 2015.

26. Castel, V. and C. Brosseau, "Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy," Applied Physics Letters, Vol. 92, 233110, 2008.

27., , http://nano.bsu.by/products/mwcnt.

28. Shuba, M. V., G. Y. Slepyan, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, "Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes," Phys. Rev. B, Vol. 79, 155403, 2009.

© Copyright 2010 EMW Publishing. All Rights Reserved