1. Kuo, Y. L. and K. L. Wong, "Printed double-T monopole antenna for 2.4/5.2GHz dual-band WLAN operations," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2187-2192, 2003, doi: 10.1109/TAP.2003.816391.
doi:10.1109/TAP.2003.816391 Google Scholar
2. Mishra, S. K., R. K. Gupta, A. Vaidya, and J. Mukherjee, "A compact dual-band fork-shaped monopole antenna for bluetooth and UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 627-630, 2011, doi: 10.1109/LAWP.2011.2159572.
doi:10.1109/LAWP.2011.2159572 Google Scholar
3. Sujith, R., V. Deepu, S. Mridula, B. Paul, D. Laila, and P. Mohanan, "Compact CPW-fed uniplanar antenna for multiband wireless applications," AEU-International Journal of Electronics and Communications, Vol. 65, No. 6, 553-559, 2011, doi: 10.1016/j.aeue.2010.09.006.
doi:10.1016/j.aeue.2010.09.006 Google Scholar
4. Kunwar, A. and A. K. Gautam, "Fork-shaped planar antenna for Bluetooth, WLAN, and WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 8, 1-6, 2016, doi:10.1017/S1759078716000647. Google Scholar
5. Ahmad, M. S. and C. Y. Kim, "Dual-element PIFA design with dual shorting pins for multiband communication devices," International Journal of Antennas and Propagation, 1-8, 2015, doi:10.1155/2015/742352.
doi:10.1155/2015/742352 Google Scholar
6. Singh, A. K. and M. K. Meshram, "Shorting pin loaded dual-band compact rectangular microstrip antenna," International Journal of Electronics, Vol. 94, No. 3, 237-250, 2007, doi:10.1080/00207210601108166.
doi:10.1080/00207210601108166 Google Scholar
7. Wong, K. L., L. C. Chou, and C. M. Su, "Dual-band flat-plate antenna with a shorted parasitic element for laptop applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 539-544, 2005, doi: 10.1109/TAP.2004.838754.
doi:10.1109/TAP.2004.838754 Google Scholar
8. Ansal, K. A and T. Shanmuganantham, "Compact ACS-fed antenna with DGS and DMS for WiMAX/WLAN applications," International Journal of Microwave and Wireless Technologies, Vol. 7, 1-6, 2015, doi: 10.1017/S1759078715000537.
doi:10.1017/S1759078714000476 Google Scholar
9. Boopathi Rani, R. and S. K. Pandey, "A parasitic hexagonal patch antenna surrounded by same shaped slot for WLAN, UWB applications with notch at VANET frequency band," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2996-3000, 2016, doi: 10.1002/mop.30204.
doi:10.1002/mop.30204 Google Scholar
10. Singh, A. and S. Singh, "Design and optimization of a modified Sierpinski fractal antenna for broadband applications," Applied Soft Computing, Vol. 38, 843-850, 2016, doi:10.1016/j.asoc.2015.10.013.
doi:10.1016/j.asoc.2015.10.013 Google Scholar
11. Ghatak, R., S. K. Ghoshal, D. Mondal, and A. K. Bhattacharjee, "A dual wideband Sierpinski carpet fractal-shaped planar monopole antenna with CPW feed," International Journal of Microwave and Wireless Technologies, Vol. 3, 77-79, 2011, doi: 10.1017/S1759078711000055.
doi:10.1017/S1759078711000055 Google Scholar
12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ,", Vol. 10, No. 4, 509-514, 1968, doi:10.1070/PU1968v010n04ABEH003699. Google Scholar
13. Pendry, J. B., A. J. Holden, and D. J. Robbins W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999, doi: 10.1109/22.798002.
doi:10.1109/22.798002 Google Scholar
14. Kim, T. G. and B. Lee, "Metamaterial-based compact zeroth-order resonant antenna," Electronics Letters, Vol. 45, No. 1, 12-13, 2009, doi: 10.1049/el:20092715.
doi:10.1049/el:20092715 Google Scholar
15. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired techniques," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2175-2182, 2012, doi: 10.1109/TAP.2012.2189699.
doi:10.1109/TAP.2012.2189699 Google Scholar
16. Sharawi, M. S., M. U. Khan, A. B. Numan, and D. N. Aloi, "A CSRR loaded MIMO antenna system for ISM band operation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4265-4274, 2013, doi: 10.1109/TAP.2013.2263214.
doi:10.1109/TAP.2013.2263214 Google Scholar
17. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna’s gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301 Google Scholar
18. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, No. 2, 292-296, 2015, doi:10.1002/mop.28835.
doi:10.1002/mop.28835 Google Scholar
19. Si, L.-M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404 Google Scholar
20. Anila, P. V., K. K. Indhu, C. M. Nijas, R. Sujith, S. Mridula, and P. Mohanan, "A planar compact metamaterial-inspired broadband antenna," Microwave and Optical Technology Letters, Vol. 56, No. 3, 610-613, 2014, doi:10.1002/mop.28175.
doi:10.1002/mop.28175 Google Scholar
21. Zhu, J. and G. V. Eleftheriades, "A compact transmission-line metamaterial antenna with extended bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 295-298, 2009, doi:10.1109/LAWP.2008.2010722. Google Scholar
22. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenn with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014, doi: 10.1002/mop.28602.
doi:10.1002/mop.28602 Google Scholar
23. Mishra, G. and S. Sahu, "Compact circular patch UWB antenna with WLAN band notch characteristics," Microwave and Optical Technology Letters, Vol. 58, No. 5, 1068-1073, 2016, doi:10.1002/mop.29727.
doi:10.1002/mop.29727 Google Scholar
24. Patel, S. K. and Y. Kosta, "Investigation on radiation improvement of corner truncated square microstrip patch antenna with double negative material," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 7, 819-833, 2013, doi: 10.1080/09205071.2013.789407.
doi:10.1080/09205071.2013.789407 Google Scholar
25. Naoui, S., L. Latrach, and A. Gharsallah, "Metamaterials microstrip patch antenna for wireless communication RFID Technology," Microwave and Optical Technology Letters, Vol. 57, No. 5, 1060-1066, 2015, doi: 10.1002/mop.29016.
doi:10.1002/mop.29016 Google Scholar
26. Yan, S. and G. A. E. Vandenbosch, "Meta-loaded circular sector patch antenna," Progress In Electromagnetics Research, Vol. 156, 37-46, 2016. Google Scholar
27. Herraiz-Martinez, F. J., G. Zamora, F. Paredes, F. Martin, and J. Bonache, "Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1528-1531, 2011, doi: 10.1109/LAWP.2011.2181309.
doi:10.1109/LAWP.2011.2181309 Google Scholar
28. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WIMAX applications," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2413-2418, 2015, doi: 10.1002/mop.29352.
doi:10.1002/mop.29352 Google Scholar
29. Mehdipour, A., T. A. Denidni, and A. R. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 555-562, 2014, doi: 10.1109/TAP.2013.2290791.
doi:10.1109/TAP.2013.2290791 Google Scholar
30. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001, ISBN-13: 978-0890065136.
31. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, 2002, ISBN-13: 978-0471417173.
doi:10.1002/0471221112
32. Balanis, C. A., Antenna Theory, Analysis and Design, 3rd Ed., Wiley, New York, USA, 2005, ISBN-13: 978-0471667827.
33. Hwang, J. N. and F. C. Chen, "Reduction of the peak SAR in the human head with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3763-3770, 2006, doi:10.1109/TAP.2006.886501.
doi:10.1109/TAP.2006.886501 Google Scholar
34. Baena, J. D., J. Bonache, F. Martn, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garca, I. Gil, M F. Portillo, and M. Soro, "Equivalent-circuit models for splitring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005, doi:10.1109/TMTT.2005.845211.
doi:10.1109/TMTT.2005.845211 Google Scholar
35. Falcone, F., T. Lopetegi, J. D. Baena, R. Marqus, F. Martn, and M. Sorolla, "Effective negative- stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004, doi:10.1109/LMWC.2004.828029.
doi:10.1109/LMWC.2004.828029 Google Scholar
36. Bonache, J., M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 10, 543-545, 2006, doi:10.1109/LMWC.2006.882400.
doi:10.1109/LMWC.2006.882400 Google Scholar