PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 70 > pp. 135-143

CSRR INSPIRED CONDUCTOR BACKED CPW-FED MONOPOLE ANTENNA FOR MULTIBAND OPERATION

By R. B. Rani and S. K. Pandey

Full Article PDF (834 KB)

Abstract:
A conductor backed coplanar waveguide (CPW) fed multiband antenna is presented. The shorting of ground in CPW feed and conductor backed arrangement extend the area of ground plane. The proposed antenna consists of rectangular monopole with Complementary Split Ring Resonator (CSRR) engraved in the extended ground plane. The prototype antenna is designed, fabricated and measured. CSRR characteristics are also analyzed. Simulated and measured results of the antenna are in good agreement with each other and are discussed. The proposed antenna can be used for WiMAX, WLAN and RADAR applications at 3.4 GHz, 5.16 GHz and 9.5 GHz, respectively.

Citation:
R. B. Rani and S. K. Pandey, "CSRR Inspired Conductor Backed CPW-Fed Monopole Antenna for Multiband Operation," Progress In Electromagnetics Research C, Vol. 70, 135-143, 2016.
doi:10.2528/PIERC16102801

References:
1. Kuo, Y. L. and K. L. Wong, "Printed double-T monopole antenna for 2.4/5.2GHz dual-band WLAN operations," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2187-2192, 2003, doi: 10.1109/TAP.2003.816391.
doi:10.1109/TAP.2003.816391

2. Mishra, S. K., R. K. Gupta, A. Vaidya, and J. Mukherjee, "A compact dual-band fork-shaped monopole antenna for bluetooth and UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 627-630, 2011, doi: 10.1109/LAWP.2011.2159572.
doi:10.1109/LAWP.2011.2159572

3. Sujith, R., V. Deepu, S. Mridula, B. Paul, D. Laila, and P. Mohanan, "Compact CPW-fed uniplanar antenna for multiband wireless applications," AEU-International Journal of Electronics and Communications, Vol. 65, No. 6, 553-559, 2011, doi: 10.1016/j.aeue.2010.09.006.
doi:10.1016/j.aeue.2010.09.006

4. Kunwar, A. and A. K. Gautam, "Fork-shaped planar antenna for Bluetooth, WLAN, and WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 8, 1-6, 2016, doi:10.1017/S1759078716000647.

5. Ahmad, M. S. and C. Y. Kim, "Dual-element PIFA design with dual shorting pins for multiband communication devices," International Journal of Antennas and Propagation, 1-8, 2015, doi:10.1155/2015/742352.
doi:10.1155/2015/742352

6. Singh, A. K. and M. K. Meshram, "Shorting pin loaded dual-band compact rectangular microstrip antenna," International Journal of Electronics, Vol. 94, No. 3, 237-250, 2007, doi:10.1080/00207210601108166.
doi:10.1080/00207210601108166

7. Wong, K. L., L. C. Chou, and C. M. Su, "Dual-band flat-plate antenna with a shorted parasitic element for laptop applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 539-544, 2005, doi: 10.1109/TAP.2004.838754.
doi:10.1109/TAP.2004.838754

8. Ansal, K. A and T. Shanmuganantham, "Compact ACS-fed antenna with DGS and DMS for WiMAX/WLAN applications," International Journal of Microwave and Wireless Technologies, Vol. 7, 1-6, 2015, doi: 10.1017/S1759078715000537.
doi:10.1017/S1759078714000476

9. Boopathi Rani, R. and S. K. Pandey, "A parasitic hexagonal patch antenna surrounded by same shaped slot for WLAN, UWB applications with notch at VANET frequency band," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2996-3000, 2016, doi: 10.1002/mop.30204.
doi:10.1002/mop.30204

10. Singh, A. and S. Singh, "Design and optimization of a modified Sierpinski fractal antenna for broadband applications," Applied Soft Computing, Vol. 38, 843-850, 2016, doi:10.1016/j.asoc.2015.10.013.
doi:10.1016/j.asoc.2015.10.013

11. Ghatak, R., S. K. Ghoshal, D. Mondal, and A. K. Bhattacharjee, "A dual wideband Sierpinski carpet fractal-shaped planar monopole antenna with CPW feed," International Journal of Microwave and Wireless Technologies, Vol. 3, 77-79, 2011, doi: 10.1017/S1759078711000055.
doi:10.1017/S1759078711000055

12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ,", Vol. 10, No. 4, 509-514, 1968, doi:10.1070/PU1968v010n04ABEH003699.

13. Pendry, J. B., A. J. Holden, and D. J. Robbins W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999, doi: 10.1109/22.798002.
doi:10.1109/22.798002

14. Kim, T. G. and B. Lee, "Metamaterial-based compact zeroth-order resonant antenna," Electronics Letters, Vol. 45, No. 1, 12-13, 2009, doi: 10.1049/el:20092715.
doi:10.1049/el:20092715

15. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired techniques," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2175-2182, 2012, doi: 10.1109/TAP.2012.2189699.
doi:10.1109/TAP.2012.2189699

16. Sharawi, M. S., M. U. Khan, A. B. Numan, and D. N. Aloi, "A CSRR loaded MIMO antenna system for ISM band operation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4265-4274, 2013, doi: 10.1109/TAP.2013.2263214.
doi:10.1109/TAP.2013.2263214

17. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna’s gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301

18. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, No. 2, 292-296, 2015, doi:10.1002/mop.28835.
doi:10.1002/mop.28835

19. Si, L.-M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404

20. Anila, P. V., K. K. Indhu, C. M. Nijas, R. Sujith, S. Mridula, and P. Mohanan, "A planar compact metamaterial-inspired broadband antenna," Microwave and Optical Technology Letters, Vol. 56, No. 3, 610-613, 2014, doi:10.1002/mop.28175.
doi:10.1002/mop.28175

21. Zhu, J. and G. V. Eleftheriades, "A compact transmission-line metamaterial antenna with extended bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 295-298, 2009, doi:10.1109/LAWP.2008.2010722.

22. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenn with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014, doi: 10.1002/mop.28602.
doi:10.1002/mop.28602

23. Mishra, G. and S. Sahu, "Compact circular patch UWB antenna with WLAN band notch characteristics," Microwave and Optical Technology Letters, Vol. 58, No. 5, 1068-1073, 2016, doi:10.1002/mop.29727.
doi:10.1002/mop.29727

24. Patel, S. K. and Y. Kosta, "Investigation on radiation improvement of corner truncated square microstrip patch antenna with double negative material," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 7, 819-833, 2013, doi: 10.1080/09205071.2013.789407.
doi:10.1080/09205071.2013.789407

25. Naoui, S., L. Latrach, and A. Gharsallah, "Metamaterials microstrip patch antenna for wireless communication RFID Technology," Microwave and Optical Technology Letters, Vol. 57, No. 5, 1060-1066, 2015, doi: 10.1002/mop.29016.
doi:10.1002/mop.29016

26. Yan, S. and G. A. E. Vandenbosch, "Meta-loaded circular sector patch antenna," Progress In Electromagnetics Research, Vol. 156, 37-46, 2016.

27. Herraiz-Martinez, F. J., G. Zamora, F. Paredes, F. Martin, and J. Bonache, "Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1528-1531, 2011, doi: 10.1109/LAWP.2011.2181309.
doi:10.1109/LAWP.2011.2181309

28. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WIMAX applications," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2413-2418, 2015, doi: 10.1002/mop.29352.
doi:10.1002/mop.29352

29. Mehdipour, A., T. A. Denidni, and A. R. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 555-562, 2014, doi: 10.1109/TAP.2013.2290791.
doi:10.1109/TAP.2013.2290791

30. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001, ISBN-13: 978-0890065136.

31. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, 2002, ISBN-13: 978-0471417173.
doi:10.1002/0471221112

32. Balanis, C. A., Antenna Theory, Analysis and Design, 3rd Ed., Wiley, New York, USA, 2005, ISBN-13: 978-0471667827.

33. Hwang, J. N. and F. C. Chen, "Reduction of the peak SAR in the human head with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3763-3770, 2006, doi:10.1109/TAP.2006.886501.
doi:10.1109/TAP.2006.886501

34. Baena, J. D., J. Bonache, F. Martn, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garca, I. Gil, M F. Portillo, and M. Soro, "Equivalent-circuit models for splitring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005, doi:10.1109/TMTT.2005.845211.
doi:10.1109/TMTT.2005.845211

35. Falcone, F., T. Lopetegi, J. D. Baena, R. Marqus, F. Martn, and M. Sorolla, "Effective negative- stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004, doi:10.1109/LMWC.2004.828029.
doi:10.1109/LMWC.2004.828029

36. Bonache, J., M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 10, 543-545, 2006, doi:10.1109/LMWC.2006.882400.
doi:10.1109/LMWC.2006.882400


© Copyright 2010 EMW Publishing. All Rights Reserved