Vol. 93
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-06-04
Sidelobe-Level Suppression for Circular Antenna Array via New Hybrid Optimization Algorithm Based on Antlion and Grasshopper Optimization Algorithms
By
Progress In Electromagnetics Research C, Vol. 93, 49-63, 2019
Abstract
The suppression of the side-lobe level (SLL) of antenna arrays is a significant factor that can enhance the reliability and validity of a communication system. Recently, metaheuristic algorithms have been widely implemented in the design of antenna arrays, in order to find the optimal minimization for the side-lobe level of the array's radiation pattern. In this paper, we propose a new hybrid algorithm that combines the characteristics of two stochastic algorithms, Antlion Optimization (ALO) algorithm and Grasshopper Optimization Algorithm (GOA). ALO, which is an evolutionary algorithm, is robust in exploitation and has been effectively used in many articles in the literature. GOA has strong capability of exploration all over the search space due to the swarm nature of the algorithm, which has been proven in several articles in the literature. Therefore, combining these characteristics and overcoming the drawbacks of ALO and GOA are the main motivation behind hybridizing ALO and GOA in one hybrid algorithm. Simulation results show that the proposed hybrid algorithm has a good performance in the radiation pattern optimization of circular antenna array (CAA) and fast convergence rate compared with other strong optimization algorithms, which prove the efficiency, robustness, and stability of the hybrid algorithm.
Citation
Anas Atef Amaireh, Asem Sh. Al-Zoubi, and Nihad I. Dib, "Sidelobe-Level Suppression for Circular Antenna Array via New Hybrid Optimization Algorithm Based on Antlion and Grasshopper Optimization Algorithms," Progress In Electromagnetics Research C, Vol. 93, 49-63, 2019.
doi:10.2528/PIERC19040909
References

1. Mirjalili, S., "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm," Knowledge-based Systems, Vol. 89, 228-249, 2015.
doi:10.1016/j.knosys.2015.07.006

2. Spall, J. C., Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, John Wiley & Sons, 2003.
doi:10.1002/0471722138

3. Eberhart, R. C. and J. Kennedy, "A new optimizer using particle swarm theory," Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.

4. Shihab, M., Y. Najjar, N. Dib, and M. Khodier, "Design of non-uniform circular antenna arrays using particle swarm optimization," Journal of Electrical Engineering, Vol. 59, 216-220, 2008.

5. Holland, J. H., "Genetic algorithms," Scientific American, Vol. 267, 66-72, 1992.
doi:10.1038/scientificamerican0792-66

6. Panduro, M., A. Mendez, R. Dominguez, and G. Romero, "Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms," International Journal of Electronics and Communications, Vol. 60, 713-717, 2006.
doi:10.1016/j.aeue.2006.03.006

7. Mirjalili, S., S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer," Advances in Engineering Software, Vol. 69, 46-61, 2014.
doi:10.1016/j.advengsoft.2013.12.007

8. Mirjalili, S., "The ant lion optimizer," Advances in Engineering Software, Vol. 83, 80-98, 2015.
doi:10.1016/j.advengsoft.2015.01.010

9. Dib, N., A. Amaireh, and A. Al-Zoubi, "On the optimal synthesis of elliptical antenna arrays," International Journal of Electronics, Vol. 106, No. 2, 121-133, 2019.
doi:10.1080/00207217.2018.1512658

10. Shah-Hosseini, H., "Principal components analysis by the galaxy-based search algorithm: A novel metaheuristic for continuous optimization," International Journal of Computational Science and Engineering, Vol. 6, 132-140, 2011.
doi:10.1504/IJCSE.2011.041221

11. Colorni, A., M. Dorigo, and V. Maniezzo, "Distributed optimization by ant colonies," Proceedings of the First European Conference on Artificial Life, 1991.

12. Amaireh, A., A. Alzoubi, and N. Dib, "Design of linear antenna arrays using antlion and grasshopper optimization algorithms," IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, 2017.

13. Saremi, S., S. Mirjalili, and A. Lewis, "Grasshopper optimisation algorithm: Theory and application," Advances in Engineering Software, Vol. 105, 30-47, 2017.
doi:10.1016/j.advengsoft.2017.01.004

14. Kaveh, A., T. Bakhshpoori, and E. Afshari, "An efficient hybrid particle swarm and swallow swarm optimization algorithm," Computers and Structures, Vol. 143, 40-59, 2014.
doi:10.1016/j.compstruc.2014.07.012

15. Wolpert, D. and W. Macready, "No free lunch theorems for optimization," IEEE Transactions on Evolutionary Computation, Vol. 1, 67-82, 1997.
doi:10.1109/4235.585893

16. Blum, C., A. Roli, and M. Sampels, Hybrid Metaheuristics — An Emerging Approach to Optimization, Springer, 2008.

17. Mirjalili, S., G. Wang, and L. S. Coelho, "Binary optimization using hybrid particle swarm optimization and gravitational search algorithm," Neural Computing & Applications, Vol. 25, 1423-1435, 2014.
doi:10.1007/s00521-014-1629-6

18. Mafarja, M., I. Aljarah, A. Heidari, A. Hammouri, H. Faris, A. Al-Zoubi, and S. Mirjalili, "Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems," Knowledge-based Systems, Vol. 145, No. 1, 25-45, 2018.
doi:10.1016/j.knosys.2017.12.037

19. Wu, J., H. Wang, N. Li, P. Yao, Y. Huang, Z. Su, and Y. Yu, "Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by adaptive grasshopper optimization algorithm," Aerospace Science and Technology, Vol. 70, 497-510, 2017.

20. Heidari, A., H. Faris, I. Aljarah, and S. Mirjalili, "An efficient hybrid multilayer perceptron neural network with grasshopper optimization," Soft Computing, 1-18, 2018.

21. El-Ghazali, T., Metaheuristics: From Design to Implementation, Wiley & Sons, 2009.

22. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.

23. Mahmoud, K., M. Eladawy, R. Bansal, S. Zainud-Deen, and S. Ibrahem, "Analysis of uniform circular arrays for adaptive beamforming applications using particle swarm optimization algorithm," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 18, 42-52, 2008.

24. Guneya, K. and S. Basbug, "A parallel implementation of seeker optimization algorithm for designing circular and concentric circular antenna arrays," Applied Soft Computing, Vol. 22, 287-296, 2014.

25. Balanis, C., Antenna Theory: Analysis and Design, Wiley, New York, 2012.

26. Panduro, M. A. and C. A. Brizuela, "A comparative analysis of the performance of GA, PSO and DE for circular antenna arrays," IEEE Antennas and Propagation Society International Symposium, Charleston, USA, 2009.

27. Reyna, A., M. Panduro, D. Covarrubias, and A. Mendez, "Design of steerable concentric rings array for low side lobe level," Scientia Iranica, Vol. 19, No. 3, 727-732, 2012.

28. Babayigit, B., "Synthesis of concentric circular antenna arrays using dragonfly algorithm," International Journal of Electronics, Vol. 105, 784-793, 2017.

29. Panduro, M. and C. Brizuela, "Evolutionary multi-objective design of non-uniform circular phased arrays," COMPEL International Journal of Computations and Mathematics in Electrical, Vol. 27, No. 2, 551-566, 2008.

30. Panduro, M., C. Brizuela, J. Garza, S. Hinojosa, and A. Maldonado, "A comparison of NSGAII, DEMO, and EM-MOPSO for the multi-objective design of concentric rings antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 9, 1100-1113, 2013.

31. Elizarraras, O., A. Mendez, A. Maldonado, M. Panduro, and D. Covarrubias, "Design of circular array of circular subarrays for scannable pattern using rotational symmetry," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017.

32. Garza, L., M. Panduro, D. Covarrubias, and A. Maldonado, "Multiobjective synthesis of steerable UWB circular antenna array considering energy patterns," International Journal of Antennas and Propagation, Vol. 2015, Article ID 789094, 9 pages, 2015.

33. Sharaqa, A. and N. Dib, "Design of linear and circular antenna arrays using biogeography based optimization," IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, 2011.