Vol. 94
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-07-15
Design and Development of an Ultrathin Triple Band Microwave Absorber Using Miniaturized Metamaterial Structure for Near-Unity Absorption Characteristics
By
Progress In Electromagnetics Research C, Vol. 94, 89-101, 2019
Abstract
This article discusses about the design and development of an ultrathin triple band microwave absorber using a miniaturized metamaterial structure for near-unity absorption characteristics. In order to design a miniaturized metamaterial (MTM) absorber unit cell with triple band response, two resonators, named as Structure-I and Structure-II, are configured within the single unit cell. The geometrical proportions of the suggested resonators have been chosen in such a manner so that Structure-I can contribute one absorption band while Structure-II can contribute two absorption bands. Therefore, the combination of two resonators offers triple band response with the highest absorption values of 99.04%, 99.62%, and 99.33% at the frequencies of 4.25 GHz, 8.35 GHz, and 11.06 GHz, respectively. Additionally, the suggested absorber unit cell claims miniaturization with total electrical size of 0.156λ0 × 0.156λ0 × 0.014λ0, where λ0 corresponds to the free-space wavelength at the first peak absorption frequency of 4.25 GHz. Additionally, the electric field and vectored surface current distribution along with the input impedance graph has been used to discuss the absorption methodology of the suggested structure. Further, the MTM belongings of the suggested structure have been illustrated with the dispersion curve.
Citation
Naveen Mishra, and Raghvendra Kumar Chaudhary, "Design and Development of an Ultrathin Triple Band Microwave Absorber Using Miniaturized Metamaterial Structure for Near-Unity Absorption Characteristics," Progress In Electromagnetics Research C, Vol. 94, 89-101, 2019.
doi:10.2528/PIERC19043002
References

1. Salisbury, W. W., Absorbent body for electromagnetic waves, U.S. Patent 2599944, filled May 11, 1943, granted June 10, 1952.

2. Cheldavi, A. and M. Kamarei, "Optimum design of n sheet capacitive Jaumann absorber using genetic algorithm," IEEE International Symposium on Antenna and Propagation, Vol. 4, 2296-2299, Montreal, Quebec, Canada, July 13-18, 1997.

3. Chambers, B. and A. Tennant, "Active Dallenbach radar absorber," IEEE International Symposium on Antennas and Propagation, 381-384, Albuquerque, New Mexico, USA, July 9-14, 2006.

4. Ishihara, K. and Y. Tomiyama, Electromagnetically anechoic chamber and shield structure therfor, US Patent 5134405, filled February 27, 1989, granted July 28, 1992.

5. Singh, P., V. K. Babbar, A. Razdan, R. K. Puri, and T. C. Goel, "Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites," Journal of Applied Physics, Vol. 87, No. 9, 4362-4366, 2000.
doi:10.1063/1.373079

6. Parida, R. C., D. Singh, and N. K. Agarwal, "Implementation of multilayer ferrite radar absorbing coating with genetic algorithm for radar cross-section reduction at X-band," Indian Journal of Radio and Space Physics, Vol. 36, 145-152, 2007.

7. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2006.

8. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver super lens," Science, Vol. 308, 534-537, 2005.
doi:10.1126/science.1108759

9. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

10. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Letters, Vol. 58, 71-75, 2016.
doi:10.1002/mop.29494

11. Fouad, M. A. and M. A. Abdalla, "New π-T generalised metamaterial negative refractive index transmission line for a compact coplanar waveguide triple band pass filter applications," IET Microw. Antennas Propag., Vol. 8, 1097-1104, 2014.
doi:10.1049/iet-map.2013.0698

12. Akgol, O., O. Altintas, E. E. Dalkilinc, E. Unal, M. Karaaslan, and C. Sabah, "Metamaterial absorber-based multisensor applications using a meander-line resonator," Optical Engineering, Vol. 56, No. 8, 087104, 2017.
doi:10.1117/1.OE.56.8.087104

13. Bakir, M., M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, "Microwave metamaterial absorber for sensing applications," Opto-Electronics Review, Vol. 25, No. 4, 318-325, 2017.
doi:10.1016/j.opelre.2017.10.002

14. Unal, E., M. Bagmanci, M. Karaaslan, O. Akgol, H. T. Arat, and C. Sabah, "Zinc oxide-tungsten-based pyramids in construction of ultra-broadband metamaterial absorber for solar energy harvesting," IET Optoelectronics, Vol. 11, No. 3, 114-120, 2017.
doi:10.1049/iet-opt.2016.0138

15. Bagmanci, M., M. Karaaslan, O. Altintas, F. Karadag, E. Tetik, and M. Bakir, "Wideband metamaterial absorber based on CRRS with lumped elements for microwave energy harvesting," Journal of Microwave Power and Electromagnetic Energy, Vol. 52, No. 1, 45-59, 2018.
doi:10.1080/08327823.2017.1405471

16. Bilotti, F., L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2171-2175, 2006.
doi:10.1002/mop.21891

17. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

18. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108, 2009.
doi:10.1103/PhysRevB.80.033108

19. Thummaluru, S. R., N. Mishra, and R. K. Chaudhary, "Design and analysis of an ultra-thin X-band polarization --- Insensitive metamaterial absorber," Microwave and Optical Technology Letters, Vol. 58, 2481-2485, 2016.
doi:10.1002/mop.30071

20. Kalraiya, S., R. K. Chaudhary, M. A. Abdalla, and R. K. Gangwar, "Polarization and incident angle independent metasurface absorber for X-band application, material research express," IOP Sciences, Vol. 6, No. 4, 045802, 2019.

21. Zhai, H., Z. Li, L. Li, and C. Liang, "A dual-band wide-angle polarization-insensitive ultrathin gigahertz metamaterial absorber," Microwave and Optical Technology Letters, Vol. 55, 1606-1609, 2013.
doi:10.1002/mop.27622

22. Kumari, K., N. Mishra, and R. K. Chaudhary, "An ultra-thin compact polarization insensitive dual band absorber based on metamaterial for X-band applications," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2664-2669, 2017.
doi:10.1002/mop.30797

23. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied Physics, Vol. 110, 014909, 2011.
doi:10.1063/1.3608246

24. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band," Journal of Applied Physics, Vol. 114, 094514, 2013.
doi:10.1063/1.4820569

25. Bian, B., S. Liu, S. Wang, X. K. Kong, H. Zhang, B. Ma, and H. Yang, "Novel triple band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," Journal of Applied Physics, Vol. 114, 194511, 2013.
doi:10.1063/1.4832785

26. Thummaluru, S. R., N. Mishra, and R. K. Chaudhary, "Design and analysis of an ultrathin triple-band polarization independent metamaterial absorbe," AEU | International Journal of Electronics and Communications, Vol. 82, 508-515, 2017.

27. Lee, J. and S. Lim, "Bandwidth enhanced and polarization-insensitive metamaterial absorber using double resonance," Electronics Lett., 47, 2011.
doi:10.1063/1.3692178

28. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, Vol. 100, 103506, 2012.
doi:10.1002/mop.28733

29. Soheilifar, M. R. and R. A. Sadeghzadeh, "Design, simulation, and fabrication of an ultrathin planar microwave metamaterial absorber," Microwave and Optical Technology Letters, Vol. 56, 2916-2922, 2014.
doi:10.1002/mop.28122

30. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Bandwidth enhancement of an ultrathin polarization insensitive metamaterial absorber," Microwave and Optical Technology Letters, Vol. 56, 350-355, 2014.
doi:10.1109/ACCESS.2017.2675439

31. Mishra, N., D. K. Choudhary, R. Chowdhury, K. Kumari, and R. K. Chaudhary, "An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications," IEEE Access, Vol. 5, 4370-4376, 2017.
doi:10.1109/TAP.2013.2290791

32. Mehdipour, A., T. A. Denidni, and A. R. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Transactions on Antennas and Propagation, Vol. 62, 555-562, 2014.
doi:10.1103/PhysRevE.71.036617

33. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physics Review E, Vol. 71, 036617, 2005.