PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 95 > pp. 167-182

SHIELDING OF A PERFECTLY CONDUCTING CIRCULAR DISK: EXACT AND STATIC ANALYTICAL SOLUTION

By G. Lovat, P. Burghignoli, R. Araneo, S. Celozzi, A. Andreotti, D. Assante, and L. Verolino

Full Article PDF (308 KB)

Abstract:
The problem of the shielding evaluation of an infinitesimally thin perfectly conducting circular disk against a vertical magnetic dipole is here addressed. The problem is reduced to a set of dual integral equations and solved in an exact form through the application of the Galerkin method in the Hankel transform domain. It is shown that a second-kind Fredholm infinite matrix-operator equation can be obtained by selecting a complete set of orthogonal eigenfunctions of the static part of the integral operator as expansion basis. A static solution is finally extracted in a closed form which is shown to be accurate up to remarkably high frequencies.

Citation:
G. Lovat, P. Burghignoli, R. Araneo, S. Celozzi, A. Andreotti, D. Assante, and L. Verolino, "Shielding of a Perfectly Conducting Circular Disk: Exact and Static Analytical Solution," Progress In Electromagnetics Research C, Vol. 95, 167-182, 2019.
doi:10.2528/PIERC19052908

References:
1. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7–8, 163, 1944.
doi:10.1103/PhysRev.66.163

2. Bouwkamp, C., "On the diffraction of electromagnetic waves by small circular disks and holes," Philips Research Reports, Vol. 5, 401-422, 1950.

3. Eggimann, W., "Higher-order evaluation of dipole moments of a small circular disk," IRE Trans. Microw. Theory Techn., Vol. 8, No. 5, 573-573, 1960.
doi:10.1109/TMTT.1960.1124796

4. Eggimann, W. H., "Higher-order evaluation of electromagnetic diffraction by circular disks," IRE Trans. Microw. Theory Techn., Vol. 9, No. 5, 408-418, 1961.
doi:10.1109/TMTT.1961.1125362

5. Williams, W., "Electromagnetic diffraction by a circular disk," Proc. Cambridge Phil. Soc., Vol. 58, No. 4, 625-630, Cambridge University Press, 1962.
doi:10.1017/S0305004100040664

6. Jones, D., "Diffraction at high frequencies by a circular disc," Proc. Cambridge Phil. Soc., Vol. 61, No. 1, 223-245, Cambridge University Press, 1965.
doi:10.1017/S0305004100038810

7. Marsland, D., C. Balanis, and S. Brumley, "Higher order diffractions from a circular disk," IEEE Trans. Antennas Propag., Vol. 35, No. 12, 1436-1444, 1987.
doi:10.1109/TAP.1987.1144034

8. Duan, D.-W., Y. Rahmat-Samii, and J. Mahon, "Scattering from a circular disk: A comparative study of PTD and GTD techniques," Proc. IEEE, Vol. 79, No. 10, 1472-1480, 1991.
doi:10.1109/5.104222

9. Nosich, A. I., "The method of analytical regularization in wave-scattering and eigenvalue problems: Foundations and review of solutions," IEEE Antennas Propag. Mag., Vol. 41, No. 3, 34-49, 1999.
doi:10.1109/74.775246

10. Bliznyuk, N. Y., A. I. Nosich, and A. N. Khizhnyak, "Accurate computation of a circular-disk printed antenna axisymmetrically excited by an electric dipole," Microw. Opt. Techn. Lett., Vol. 25, No. 3, 211-216, 2000.
doi:10.1002/(SICI)1098-2760(20000505)25:3<211::AID-MOP15>3.0.CO;2-D

11. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

12. Balaban, M. V., R. Sauleau, T. M. Benson, and A. I. Nosich, "Dual integral equations technique in electromagnetic wave scattering by a thin disk," Progress In Electromagnetics Research, Vol. 16, 107-126, 2009.
doi:10.2528/PIERB09050701

13. Hongo, K., A. D. U. Jafri, and Q. A. Naqvi, "Scattering of electromagnetic spherical wave by a perfectly conducting disk," Progress In Electromagnetics Research, Vol. 129, 315-343, 2012.
doi:10.2528/PIER11102805

14. Di Murro, F., M. Lucido, G. Panariello, and F. Schettino, "Guaranteed-convergence method of analysis of the scattering by an arbitrarily oriented zero-thickness PEC disk buried in a lossy half-space," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3610-3620, 2015.
doi:10.1109/TAP.2015.2438336

15. Nosich, A. I., "Method of analytical regularization in computational photonics," Radio Sci., Vol. 51, No. 8, 1421-1430, 2016.
doi:10.1002/2016RS006044

16. Lucido, M., G. Panariello, and F. Schettino, "Scattering by a zero-thickness PEC disk: A new analytically regularizing procedure based on Helmholtz decomposition and Galerkin method," Radio Sci., Vol. 52, No. 1, 2-14, 2017.
doi:10.1002/2016RS006140

17. Chew, W. C., Waves and Fields in Inhomogenous Media, IEEE Press, Piscataway, NJ, 1999.
doi:10.1109/9780470547052

18. Tango, W. J., "The circle polynomials of Zernike and their application in optics," Appl. Phys., Vol. 13, No. 4, 327-332, 1977.
doi:10.1007/BF00882606

19. Rdzanek, W., "Sound scattering and transmission through a circular cylindrical aperture revisited using the radial polynomials," J. Acoust. Soc. Am., Vol. 143, No. 3, 1259-1282, 2018.
doi:10.1121/1.5025159

20. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Product, 7th Ed., Academic Press, Burlington, MA, 2014.

21. Jackson, J. D., "Classical Electrodynamics," Wiley, 1999.

22. Eason, G., B. Noble, and I. N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. R. Soc. Lond. A, Vol. 247, No. 935, 529-551, 1955.
doi:10.1098/rsta.1955.0005

23. Reed, M. and B. Simon, Method of Modern Mathematical Physics, Vol. 1: Functional Analysis, Academic Press Inc., San Diego, 1980.


© Copyright 2010 EMW Publishing. All Rights Reserved