PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 95 > pp. 107-117

ON THE OUTAGE PERFORMANCE OF PARTIAL RELAY SELECTION AIDED NOMA SYSTEM WITH ENERGY HARVESTING AND OUTDATED CSI OVER NON-IDENTICAL CHANNELS

By P. A. Owolawi and K. O. Odeyemi

Full Article PDF (206 KB)

Abstract:
In this paper, the outage probability performance of energy harvesting based partial relay selection aided non-orthogonal multiple access (NOMA) system under outdated channel state information is studied. The source to relays link is assumed to follow Rayleigh fading distribution while the relay nodes to users are subjected to Nakagami-m distribution. The relay nodes employ an energy harvesting power splitting-based relaying protocol to transmit the source information to the users.At the destination, each user is equipped with multiple antennas, and maximum ratio combining is considered for signal reception. In order to evaluate the system performance, the outage probability closed-form expression for the concerned system is derived. The results demonstrate the significant impact of system and channel parameters on the system performance. In addition, the advantage of NOMA over the conventional orthogonal multiple access is also presented. Finally, the accuracy of the derived outage expression is validated through the Monte-Carlo simulation.

Citation:
P. A. Owolawi and K. O. Odeyemi, "On the Outage Performance of Partial Relay Selection Aided NOMA System with Energy Harvesting and Outdated CSI Over Non-Identical Channels," Progress In Electromagnetics Research C, Vol. 95, 107-117, 2019.
doi:10.2528/PIERC19070303

References:
1. Bariah, L., S. Muhaidat, and A. Al-Dweik, "Error probability analysis of non-orthogonal multiple access over Nakagami-m fading channels," IEEE Transactions on Communications, Vol. 67, No. 2, 1586-1599, 2019.
doi:10.1109/TCOMM.2018.2876867

2. Liang, X., Y. Wu, D. W. K. Ng, Y. Zuo, S. Jin, and H. Zhu, "Outage performance for cooperative NOMA transmission with an AF relay," IEEE Communications Letters, Vol. 21, No. 11, 2428-2431, 2017.
doi:10.1109/LCOMM.2017.2681661

3. Liu, H., N. I. Miridakis, T. A. Tsiftsis, K. J. Kim, and K. S. Kwak, "Coordinated uplink transmission for cooperative NOMA systems," Proceedings of 2018 IEEE Global Communications Conference (GLOBECOM), 1-6, 2018.

4. Men, J., J. Ge, C. Zhang, M. Li, and Y. Hu, "The impact of channel estimation errors on the performance of cooperative nonorthogonal multiple access 5G systems under Nakagami-m fading," Transactions on Emerging Telecommunications Technologies, Vol. 29, No. 3, e3253, 2018.
doi:10.1002/ett.3253

5. Men, J. and J. Ge, "Performance analysis of non-orthogonal multiple access in downlink cooperative network," IET Communications, Vol. 9, No. 18, 2267-2273, 2015.
doi:10.1049/iet-com.2015.0203

6. Aldababsa, M. and O. Kucur, "Outage performance of NOMA with TAS/MRC in dual hop AF relaying networks," Proceedings of 2017 Advances in Wireless and Optical Communications (RTUWO), 137-141, 2017.
doi:10.1109/RTUWO.2017.8228521

7. Han, W., J. Ge, and J. Men, "Performance analysis for NOMA energy harvesting relaying networks with transmit antenna selection and maximal-ratio combining over Nakagami-m fading," IET Communications, Vol. 10, No. 18, 2687-2693, 2016.
doi:10.1049/iet-com.2016.0630

8. Men, J., J. Ge, and C. Zhang, "Performance analysis for downlink relaying aided non-orthogonal multiple access networks with imperfect CSI over Nakagami-m fading," IEEE Access, Vol. 5, 998-1004, 2016.

9. Lee, S., D. B. da Costa, Q.-T. Vien, T. Q. Duong, R. T. de Sousa, and Jr., "Non-orthogonal multiple access schemes with partial relay selection," IET Communications, Vol. 11, No. 6, 846-854, 2016.
doi:10.1049/iet-com.2016.0836

10. Bao, V. N. Q. and N. T. Van, "Incremental relaying networks with energy harvesting relay selection: Performance analysis," Transactions on Emerging Telecommunications Technologies, Vol. 29, No. 12, e3483, 2018.
doi:10.1002/ett.3483

11. Ye, Y., Y. Li, D. Wang, F. Zhou, R. Q. Hu, and H. Zhang, "Optimal transmission schemes for DF relaying networks using SWIPT," IEEE Transactions on Vehicular Technology, Vol. 67, No. 8, 7062-7072, 2018.
doi:10.1109/TVT.2018.2826598

12. Nasir, A. A., X. Zhou, S. Durrani, and R. A. Kennedy, "Relaying protocols for wireless energy harvesting and information processing," IEEE Transactions on Wireless Communications, Vol. 12, No. 7, 3622-3636, 2013.
doi:10.1109/TWC.2013.062413.122042

13. Ye, J., Z. Liu, H. Zhao, G. Pan, Q. Ni, and M.-S. Alouini, "Relay selections for cooperative underlay CR systems with energy harvesting," IEEE Transactions on Cognitive Communications and Networking, Vol. 5, No. 2, 358-369, 2019.
doi:10.1109/TCCN.2019.2908900

14. Hoang, T. M., N. T. Tan, and S.-G. Choi, "Analysis of partial relay selection in NOMA systems with RF energy harvesting," Proceedings of 2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), 13-18, 2018.

15. Michalopoulos, D. S., H. A. Suraweera, and R. Schober, "Relay selection for simultaneous information transmission and wireless energy transfer: A tradeoff perspective," IEEE Journal on Selected Areas in Communications, Vol. 33, No. 8, 1578-1594, 2015.

16. Anh, P. V. T., V. N. Q. Bao, and K. N. Le, "On the performance of wireless energy harvesting TAS/MRC relaying networks over Nakagami-m fading channels," Proceedings of 2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS), 1-5, 2016.

17. Men, J., J. Ge, and C. Zhang, "Performance analysis of nonorthogonal multiple access for relaying networks over Nakagami-m fading channels," IEEE Transactions on Vehicular Technology, Vol. 66, No. 2, 1200-1208, 2016.
doi:10.1109/TVT.2016.2555399

18. Soysa, M., H. A. Suraweera, C. Tellambura, and H. K. Garg, "Amplify-and-forward partial relay selection with feedback delay," Proceedings of 2011 IEEEWireless Communications and Networking Conference, 1304-1309, 2011.
doi:10.1109/WCNC.2011.5779318

19. El-Malek, A. H. A., A. M. Salhab, S. A. Zummo, and M.-S. Alouini, "Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling," IEEE Transactions on Wireless Communications, Vol. 15, No. 9, 5904-5918, 2016.
doi:10.1109/TWC.2016.2572681

20. Men, J. and J. Ge, "Non-orthogonal multiple access for multiple-antenna relaying networks," IEEE Communications Letters, Vol. 19, No. 10, 1686-1689, 2015.
doi:10.1109/LCOMM.2015.2472006

21. Gradshteyn, I. S., I. M. Ryzhik, and R. H. Romer, , Tables of Integrals, Series, and Products, ed. AAPT, 1988.


© Copyright 2010 EMW Publishing. All Rights Reserved