PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 100 > pp. 73-82

A NARROW BEAM, BEAM STEERABLE AND LOW SIDE-LOBE REFLECTARRAY BASED ON MACRO ELECTRO-MECHANICAL TECHNIQUE

By R. Asgharian, B. G. Zakeri, and M. Yazdi

Full Article PDF (1,591 KB)

Abstract:
In this paper, an X-band, nonuniform and passive beam steering reflectarray antenna is presented. The beam steering is done with a small movement of a large element, i.e. the ground plane. The maximum ±7.5° beam scanning from the antenna broadside is achieved by only ±0.05λ ground tilting. In the proposed structure, the beam steering capability is provided by using passive elements that eliminate the need for active biased circuits. The linearity of beam scanning as a function of ground tilting is also investigated. Compared to the previous similar works, the antenna's half-power beamwidth and side lobe level are improved by about 9° and 20 dB, respectively. A primarily proposed reflectarray is fabricated to validate our claim.

Citation:
R. Asgharian, B. G. Zakeri, and M. Yazdi, "A Narrow Beam, Beam Steerable and Low Side-Lobe Reflectarray Based on Macro Electro-Mechanical Technique," Progress In Electromagnetics Research C, Vol. 100, 73-82, 2020.
doi:10.2528/PIERC19120104
http://www.jpier.org/pierc/pier.php?paper=19120104

References:
1. Nayeri, P., F. Yang, and A. Z. Elsherbeni, "Beam-scanning reflectarray antennas: A technical overview and state of the art," IEEE Antennas Propag. Mag., Vol. 57, No. 4, 32-47, 2015, https://doi.org/10.1109/MAP.2015.2453883.
doi:10.1109/MAP.2015.2453883

2. Mishra, N. K., S. Das, and D. K. Vishwakarma, "Beam steered linear array of cylindrical dielectric resonator antenna," AEU --- International Journal of Electronics and Communications, Vol. 98, 106-113, 2019, https://doi.org/10.1016/j.aeue.2018.11.011.
doi:10.1016/j.aeue.2018.11.011

3. Derakhshan, A., J. Nourinia, and C. Ghobadi, "Electromechanical beamsteering reflectarray antenna for X-band applications," AEU --- International Journal of Electronics and Communications, Vol. 94, 145-149, 2018, https://doi.org/10.1016/j.aeue.2018.06.030.
doi:10.1016/j.aeue.2018.06.030

4. Yuan, Q. and Q. Chen, "Ninja array antenna: Novel approach for low backscattering phased array antenna," IET Microw. Antennas Propag., Vol. 12, No. 3, 346-353, 2017, https://doi.org/10.1049/iet-map.2017.0496.

5. Hum, S. V. and J. Perruisseau-Carrier, "Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 183-198, 2014, https://doi.org/10.1109/TAP.2013.2287296.
doi:10.1109/TAP.2013.2287296

6. Brookner, E., "Phased-array radars: Past, astounding breakthroughs and future trends," Microw. J., Vol. 51, No. 1, 30-50, 2008.

7. Nasrollahi, H., M. Fallah, A. H. Nazeri, and A. Abdolali, "Novel algorithm for designing reflect-array antennas based on analytical methods," AEU --- International Journal of Electronics and Communications, Vol. 97, 280-289, 2018, https://doi.org/10.1016/j.aeue.2018.09.016.
doi:10.1016/j.aeue.2018.09.016

8. Tahseen, M. M. and A. A. Kishk, "C-band linearly polarised textile-reflectarray (TRA) using conductive thread," IET Microw. Antennas Propag., Vol. 11, No. 7, 982-989, 2017, https://doi.org/10.1049/iet-map.2016.0630.
doi:10.1049/iet-map.2016.0630

9. Zhang, S., "Three-dimensional printed millimetre wave dielectric resonator reflectarray," IET Microw. Antennas Propag., Vol. 11, No. 14, 2005-2009, 2017, https://doi.org/10.1049/iet-map.2017.0278.
doi:10.1049/iet-map.2017.0278

10. Hum, S. V., M. Okoniewski, and R. J. Davies, "Realizing an electronically tunable reflectarray using varactor diode-tuned elements," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 6, 422-424, 2005, https://doi.org/10.1109/LMWC.2005.850561.
doi:10.1109/LMWC.2005.850561

11. Li, Y. and A. Abbosh, "Reconfigurable reflectarray antenna using single-layer radiator controlled by PIN diodes," IET Microw. Antennas Propag., Vol. 9, No. 7, 664-671, 2014, https://doi.org/10.1049/iet-map.2014.0227.
doi:10.1049/iet-map.2014.0227

12. Legay, H., B. Pinte, M. Charrier, A. Ziaei, E. Girard, and R. Gillard, "A steerable reflectarray antenna with MEMS controls," IEEE International Symposium on Phased Array Systems and Technology, 494-499, IEEE, Boston, MA, USA, 2003, https://doi.org/10.1109/PAST.2003.1257031.

13. Perez-Palomino, G., et al., "Design and demonstration of an electronically scanned reflectarray antenna at 100 GHz using multiresonant cells based on liquid crystals," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3722-3727, 2015, https://doi.org/10.1109/TAP.2015.2434421.
doi:10.1109/TAP.2015.2434421

14. Yang, X., et al., "A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 3959-3966, 2017, https://doi.org/10.1109/TAP.2017.2708079.
doi:10.1109/TAP.2017.2708079

15. Yang, X., et al., "A mechanically reconfigurable reflectarray with slotted patches of tunable height," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 4, 555-5558, 2018, https://doi.org/10.1109/LAWP.2018.2802701.
doi:10.1109/LAWP.2018.2802701

16. Romanofsky, R., C. Mueller, and C. V. Chandrasekar, "Concept for a low-cost, high-efficiency precipitation radar system based on ferroelectric reflectarray antenna,", NASA Technical Reports Server, Report No.: NASA/TM-2009-215663, E-17005, 2009.

17. Alizadeh, P., C. Parini, and K. Rajab, "Optically reconfigurable unit cell for Ka-band reflectarray antennas," Electron. Lett., Vol. 53, No. 23, 1526-1528, 2017, https://doi.org/10.1049/el.2017.1866.
doi:10.1049/el.2017.1866

18. Biswas, S. R., et al., "Tunable graphene metasurface reflectarray for cloaking, illusion, and focusing," Phys. Rev. Appl., Vol. 9, No. 3, 034021, 2018, https://doi.org/10.1103/PhysRevApplied.9.034021.
doi:10.1103/PhysRevApplied.9.034021

19. Tamagnone, M. and J. R. Mosig, "Theoretical limits on the efficiency of reconfigurable and nonreciprocal graphene antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1549-1552, 2016, https://doi.org/10.1109/LAWP.2016.2521835.
doi:10.1109/LAWP.2016.2521835

20. Momeni Hasan Abadi, S. M. A., J. H. Booske, and N. Behdad, "MAcro-Electro-Mechanical Systems (MÀMS) based concept for microwave beam steering in reflectarray antennas," J. Appl. Phys., Vol. 120, No. 5, 054901, 2016, https://doi.org/10.1063/1.4960352.
doi:10.1063/1.4960352

21. Mavridou, M., K. Konstantinidis, and A. P. Feresidis, "Continuously tunable mm-wave high impedance surface," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1390-1393, 2016, https://doi.org/10.1109/LAWP.2015.2510420.
doi:10.1109/LAWP.2015.2510420

22. Huang, J. and J. A. Encinar, Reflectarray Antennas, John Wiley & Sons, 2007.
doi:10.1002/9780470178775

23. Shaker, J., M. R. Chaharmir, and J. Ethier, Reflectarray Antennas: Analysis, Design, Fabrication, and Measurement, Artech House, 2013.

24. CST Microwave Studio [Internet], , 2014 [cited 20 November 2018]. Available from: http://www.cst.com.

25. Sievenpiper, D., J. Schaffner, R. Loo, G. Tangonan, S. Ontiveros, and R. Harold, "A tunable impedance surface performing as a reconfigurable beam steering reflector," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 384-390, 2002, https://doi.org/10.1109/8.999631.
doi:10.1109/8.999631

26. Morabito, A. F., L. Di Donato, and T. Isernia, "Orbital angular momentum antennas: Understanding actual possibilities through the aperture antennas theory," IEEE Antennas Propag. Mag., Vol. 60, No. 2, 52-67, 2018, https://doi.org/10.1109/MAP.2018.2796445.
doi:10.1109/MAP.2018.2796445

27. Veysi, M., C. Guclu, F. Capolino, and Y. Rahmat-Samii, "Revisiting orbital angular momentum beams: Fundamentals, reflectarray generation, and novel antenna applications," IEEE Antennas Propag. Mag., Vol. 60, No. 2, 68-81, 2018, https://doi.org/10.1109/MAP.2018.2796439.
doi:10.1109/MAP.2018.2796439


© Copyright 2010 EMW Publishing. All Rights Reserved