PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 101 > pp. 13-28

TUNEABLE FREQUENCY SELECTIVE SURFACE

By Y. Anand and A. Mittal

Full Article PDF (1,109 KB)

Abstract:
This paper is presented to provide an overview on frequency selective surfaces and techniques to achieve tune-ability in frequency selective surface (FSS). FSS array element with specific arrangement on the dielectric surface either transmits (pass-band) or reflects (stop-band) partially or completely with resonance of the structure in tune with the frequency of electromagnetic wave. Tuning devices like PIN or Varactor incorporated in the structure tune the performance. The recent researches on FSS structures classifying them into structural classification and mechanisms to change the operating resonance frequency dynamically by changing the bias of the tuning devices like PIN or Varactor diode have been studied and detailed in this review article. Tune-ability allows the FSS layer filter to adapt to spectral changes and to compensate for the best performance in terms of bandwidth, gain, and directivity. We also focused important performance parameters, particularly on how development in this field could facilitate invention in advanced electromagnetics.

Citation:
Y. Anand and A. Mittal, "Tuneable Frequency Selective Surface," Progress In Electromagnetics Research C, Vol. 101, 13-28, 2020.
doi:10.2528/PIERC19123104
http://www.jpier.org/pierc/pier.php?paper=19123104

References:
1. Vaid, S. and A. Mittal, "Wide-band dual sense circularly polarized resonant cavity antenna for X band applications," Progress In Electromagnetics Research C, Vol. 88, 285-295, 2018.

2. Anwar, R. S., et al., "Frequency selective surfaces: A review," Applied Science, Vol. 8, No. 9, 1689, 2018.
doi:10.3390/app8091689

3. Kotnala, A., P. Juyal, A. Mittal, and A. De, "Investigation of cavity reflex antenna using circular patch type FSS superstrate," Progress In Electromagnetics Research B, Vol. 42, 141-161, 2012.
doi:10.2528/PIERB12042504

4. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antenna with dual layer Jerusalem cross partially reflective surface," Progress In Electromagnetics Research C, Vol. 72, 105-113, 2017.
doi:10.2528/PIERC17011103

5. Costa, F., A. Monorchio, and G. P. Vastante, "Tunable high-impedance surface with a reduced number of varactors," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 11-13, 2011.
doi:10.1109/LAWP.2011.2107723

6. Costa, F., et al., "On the bandwidth ofhigh-impedance frequency selective surfaces," IEEE Antennas Wireless Propagation Letters, Vol. 8, 1341-1344, 2009.
doi:10.1109/LAWP.2009.2038346

7. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Vol. 29, Wiley Online Library, NJ, USA, 2000.
doi:10.1002/0471723770

8. Janaswamy, R. and S.-W. Lee, "Scattering from dipoles loaded with diodes," IEEE Trans. on Antennas & Radio Wave Propagat., Vol. 36, 1649-1651, 1988.
doi:10.1109/8.9722

9. Zhang, L., W. Li, G. Yang, and Q. Wu, A novel general structure of tuneable frequency selective surface without bias grid, National Natural Science Foundation of China (Grant No. 60971064), 2011.

10. Ourir, A., S. N. Burokur, and A. de Lustrac, "Electronically reconfigurable meta-material for compact directive cavity antennas," Electronics Letters, Vol. 43, No. 13, 698-700, IET, Jun. 21, 2007.
doi:10.1049/el:20071181

11. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "High-gain low side lobe level Fabry Perot cavity antenna with feed patch array," Progress In Electromagnetics Research C, Vol. 28, 223-238, 2012.
doi:10.2528/PIERC12031503

12. Wang, H., et al., "Broadband tunability of polarization-insensitive absorber based on frequency selective surface," Scientific Reports, Vol. 6, 23081, 2016.
doi:10.1038/srep23081

13. Tennant, A. and B. Chambers, "A single-layer tuneable microwave absorber using an active FSS," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 46-47, Jan. 2004.
doi:10.1109/LMWC.2003.820639

14. Hu, X.-D., X.-L. Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, "A novel dual band Frequency Selective Surface (FSS),", 978-1-4244-2802-1/09/$25.00 c2009 IEEE.

15. Doken, B. and M. Kartal, "Tunable frequency surface design between 2.43 GHz and 6 GHz," An International Journal (ELELIJ), Vol. 6, No. 3, 1-8, Aug. 2017.

16. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702

17. Qin, F., S. Gao, G. Wei, Q. Luo, C. Mao, C. Gu, J. Xu, and J. Li, "Wideband circularly polarized Fabry-Perot antenna [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 57, No. 5, 127-135, 2015.
doi:10.1109/MAP.2015.2470678

18. Rahmani-Shams, Y., S. Mohammd-Ali-Nezhad, A. N. Yeganeh, and S. H. Sedighy, "Dual band low profile and compact tuneable frequency selective serface with wide tuning range," Journal of Applied Physics, Vol. 123, 235301, 2018.
doi:10.1063/1.5023449

19. Doken, B. and M. Kartal, "An active frequency selective surface design having four different switchable frequency characteristics," Radio Engineering, Vol. 28, No. 1, 114-120, Apr. 2019.

20. Ourir, A., et al., Directive metamaterial-based subwavelength resonant cavity antennas — Applications for beam steering, Institut d'electronique fondamentale, Universite Paris Sud, UMR 8622 — CNRS, 91405 Orsay cedex, France, Available online Jun. 26, 2009.

21. Ghosh, S. and K. V. Srivastava, "Broadband polarization-insensitive tunable frequency selective surface for wideband shielding," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 166-172, 2017.
doi:10.1109/TEMC.2017.2706359

22. Huang, X. G., Z. Shen, Q. Y. Feng, and B. Li, "Tunable 3-D bandpass frequency-selective structure with wide tuning range," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3297-3301, 2015.
doi:10.1109/TAP.2015.2428737

23. Ucar, M. H. B., A. Sondas, and Y. E. Erdemli, "Switchable split-ring frequency selective surfaces," Progress In Electromagnetics Research B, Vol. 6, 65-79, 2008.
doi:10.2528/PIERB08031214

24. Boccia, L., et al., "Tunable frequency-selective surfaces for beam-steering applications," Electronics Letters, Vol. 45, No. 24, 1213-1215, Nov. 19, 2009.
doi:10.1049/el.2009.2577

25. Li, Y., L. Li, Y. Zhang, and C. Zhao, "Design and synthesis of multilayer frequency selective surface based on antenna-filter-antenna using Minkowski fractal structures," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 133-141, 2014.
doi:10.1109/TAP.2014.2367523


© Copyright 2010 EMW Publishing. All Rights Reserved