Vol. 104
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-07-23
Design of Airborne Radome Using Novel Temperature Dependent Electromagnetic Modeling
By
Progress In Electromagnetics Research C, Vol. 104, 37-52, 2020
Abstract
In this paper, a novel temperature dependent electromagnetic modeling for the design of airborne radome is presented. A smooth spatial temperature distribution on the radome surface is modeled using a piecewise cubic hermite interpolating polynomial as well as piecewise linear interpolation. The temperature gradient across the radome wall is modeled using the inhomogeneous planar layer. The performance of a radome is computed using the 3D ray tracing method in conjunction with aperture integration. A unique radome wall configuration is obtained for each ray for accurate representation of a hot radome. A streamlined radome designed using the proposed model shows a significant performance improvement over the radome designed at the average temperature. The designed radome has the minimum insertion loss of 0.015 dB and the maximum boresight error of 1.8 mrad. The proposed method can be easily used with the experimentally obtained temperature distribution to predict the changes in radome performance in changing hypersonic environment.
Citation
Aparna Parameswaran, and Hrishikesh Sonalikar, "Design of Airborne Radome Using Novel Temperature Dependent Electromagnetic Modeling," Progress In Electromagnetics Research C, Vol. 104, 37-52, 2020.
doi:10.2528/PIERC20041704
References

1. Shavit, R., Radome Electromagnetic Theory and Design, Wiley Online Library, 2018.

2. Cary, R. J. H., The Handbook of Antenna Design, Peter Peregrinus Ltd., 1983.

3. Kozakoff, D. J., Analysis of Radome-enclosed Antennas, 2nd Edition, Artech House, 2010.

4. Nair, R., M. Suprava, and R. Jha, "Graded dielectric inhomogeneous streamlined radome for airborne applications," Electronics Letters, Vol. 51, No. 11, 862-863, 2015.

5. Yazeen, P. M., C. Vinisha, S. Vandana, M. Suprava, and R. U. Nair, "Electromagnetic performance analysis of graded dielectric inhomogeneous streamlined airborne radome," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2718-2723, 2017.

6. Nair, R. U. and R. M. Jha, "Electromagnetic design and performance analysis of airborne radomes: Trends and perspectives," IEEE Antennas and Propagation Magazine, Vol. 56, No. 4, 276-298, 2014.

7. Zhou, L., Y. Pei, and D. Fang, "Dual-band A-sandwich radome design for airborne applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 218-221, 2015.

8. Xu, W., B. Y. Duan, P. Li, N. Hu, and Y. Qiu, "Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5880-5885, 2014.

9. Xu, W., B. Duan, P. Li, and Y. Qiu, "A new efficient thickness profile design method for streamlined airborne radomes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6190-6195, 2017.

10. Xu, W., B. Duan, P. Li, and Y. Qiu, "Study on the electromagnetic performance of inhomogeneous radomes for airborne applications. Part I: Characteristics of phase distortion and boresight error," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3162-3174, 2017.

11. Xu, W., P. Li, and Y. Qiu, "Electromagnetic performance analysis of inhomogeneous airborne radomes for circular polarization applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 74-78, 2019.

12. Zhou, L., Y. Pei, R. Zhang, and D. Fang, "Optimal design for high-temperature broadband radome wall with symmetrical graded porous structure," Progress In Electromagnetics Research, Vol. 127, 1-14, 2012.

13. Kilcoyne, N. R., "A two-dimensional ray-tracing method for the calculation of radome boresight error and antenna pattern distortion,", Ohio State Univ. Columbus Electroscience Lab., 1963.

14. Weckesser, L. B., R. K. Frazer, D. J. Yost, B. E. Kuehne, G. P. Tricoles, R. Hayward, and E. L. Rope, "Aerodynamic heating effects on radome boresight errors," Proceeding of 14th Symposium on Electromagnetic Windows, 45-51, 1978.

15. Nair, P. R. U. and R. M. Jha, "Temperature dependent EM performance predictions of dielectric slab based on inhomogeneous planar layer model," IEEE Antennas and Wireless Propagation Letters, 1-2, 2012.

16. Sonalikar, H. S., "Temperature dependent EM investigation of inhomogeneous dielectric wall for application in ablatable radome," 2018 IEEE Indian Conference on Antennas and Propagation (InCAP), 1-5, Hyderabad, India, December 2018.

17. Aparna, A. P. and H. S. Sonalikar, "Temperature dependent electromagnetic design of dielectric wall for airborne applications," 2019 IEEE Indian Conference on Antennas and Propagation (InCAP), Ahmedabad, India, December 2019.

18. Nair, R. U., S. Vandhana, S. Sandhya, and R. M. Jha, "Temperature-dependent electromagnetic performance predictions of a hypersonic streamlined radome," Progress In Electromagnetics Research, Vol. 154, 65-78, 2015.

19. Nair, R. U. and R. M. Jha, "Electromagnetic performance analysis of a novel monolithic radome for airborne applications," IEEE Transactions on Antennas and Propagation, Vol. 57, 3664-3668, 2009.

20. Crone, G. A. E., A. W. Rudge, and G. N. Taylor, "Design and performance of airborne radomes: A review," IEE Proc., Vol. 128, 451-464, 1981.

21. Rabbath, C. A. and D. Corriveau, "A comparison of piecewise cubic Hermite interpolating polynomials, cubic splines and piecewise linear functions for the approximation of projectile aerodynamics," Defence Technology, Vol. 15, No. 5, 741-757, 2019.

22. Chen, F., Q. Shen, and L. Zhang, "Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.

23. Eliason, L. K. and G. C. Zellner, "A survey of high temperature ceramic materials for radomes,", Melpar Inc., Falls Church, VA, 1964.

24. Aparna, A. P. and H. S. Sonalikar, "Fast computation of radome EM parameters with golden section search method for radiation pattern peak detection," Proc. 5th International Conference on Electronics, Computing and Communication Technologies (IEEE CONECCT), Bangalore, India, July 2019.

25. Zanwar, Y. S., A. Parameswaran, and H. S. Sonalikar, "Optimization of gimbal parameters to improve the boresight error performance of airborne radomes," Progress In Electromagnetics Research M, Vol. 90, 127-135, 2020.

26. Burks, D. G. and J. L. Volakis, ``Radomes" in Antenna Engineering Handbook, McGraw-Hill, 2007.