Vol. 109
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-25
Resonant High Quality Factor Translucent Lens/Monochromator with Adjustable Focus for Electromagnetic Absorbance Imaging of Micro-Biomolecules
By
Progress In Electromagnetics Research C, Vol. 109, 39-52, 2021
Abstract
Characterization of some biological materials relies on absorption imaging. In this paper, a highly translucent flat two-layer structure as part of an imaging system called spectrometer is proposed that has a very high numerical aperture (NA) and high quality factor (QF). The structure can be used to identify micro-biological materials with previously known absorption rate, under single-wavelength electromagnetic absorbance imaging. The proposed two-layer structure is composed of a double-near-zero (DNZ) slab coupled to a high-index dielectric slab with a specific thickness. In DNZ materials, both the permittivity and permeability are close to zero. The DNZ slab operates as a flat lens, and the very high-index dielectric slab functions as a high QF monochromator that at the same time increases NA of the lens without affecting translucidity of the two-layer structure. At the end, a transformation optics (TO) based nonlinear lens is introduced that can be replaced as the DNZ layer. The focus of the nonlinear lens can be tuned by tuning its material parameters.
Citation
Reza Dehbashi, "Resonant High Quality Factor Translucent Lens/Monochromator with Adjustable Focus for Electromagnetic Absorbance Imaging of Micro-Biomolecules," Progress In Electromagnetics Research C, Vol. 109, 39-52, 2021.
doi:10.2528/PIERC20111202
References

1. Dehbashi, R. and M. Shahabadi, "External cylindrical invisibility cloaks with small material dynamic range," IEEE Trans. Antenn. Propag., Vol. 62, No. 4, 2187, 2014.
doi:10.1109/TAP.2014.2301991

2. Dehbashi, R., K. S. Bialkowski, and A. M. Abbosh, "Uniqueness theorem and uniqueness of inverse problems for lossy anisotropic inhomogeneous structures with diagonal material tensors," J. Appl. Phys., Vol. 121, No. 20, 203103, 2017.
doi:10.1063/1.4983768

3. Dehbashi, R. and M. Shahabadi, "Possibility of perfect concealment by lossy conventional and lossy metamaterial cylindrical invisibility cloaks," J. Appl. Phys., Vol. 114, No. 24, 244501, 2013.
doi:10.1063/1.4850956

4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 18, No. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Smith, D. R., J. B. Pendry, and M. C. K. Wiltsgire, "Metamaterials and negative refractive index," Science, Vol. 305, 788, 2004.
doi:10.1126/science.1096796

6. Dehbashi, R., D. Fathi, S. Mohajerzadeh, and B. Forouzandeh, "Equivalent left-handed/right-handed metamaterial’s circuit for the massless dirac fermions with negative refraction," IEEE J. Sel. Top. Quantum Electron., Vol. 16, No. 2, 394, 2010.
doi:10.1109/JSTQE.2009.2033818

7. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, No. 15, 155410, 2007.
doi:10.1103/PhysRevB.75.155410

8. Alekseyev, L. V., E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, "Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control," Appl. Phys. Lett., Vol. 13, No. 97, 131107, 2010.
doi:10.1063/1.3469925

9. Liu, R., Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunnelling through an epsilon-near-aero metamaterial at microwave frequencies," Phys. Rev. Lett., Vol. 2, No. 100, 023903, 2008.
doi:10.1103/PhysRevLett.100.023903

10. Mass, R., J. Parsons, N. Engheta, and A. Polman, "Experimental realization of an epsilon-near-zero metamaterial at visible wavelength," Nat. Photonics, Vol. 7, 907, 2013.
doi:10.1038/nphoton.2013.256

11. Ahmed, M. M. and N. Engheta, "Wave-matter interactions in epsilon-and-mu-near-zero structures," Nat. Commun., Vol. 5, 5638, 2014.

12. Dehbashi, R., K. S. Bialkowski, and A. M. Abbosh, "Half-sized cylindrical invisibility cloaks using double near zero slabs with realistic material size and properties," Opt. Express, Vol. 25, No. 20, 24486, 2017.
doi:10.1364/OE.25.024486

13. Dehbashi, R., K. S. Bialkowski, and A. M. Abbosh, "Size reduction of electromagnetic devices using double near zero materials," IEEE Trans. Antenn. Propag., Vol. 65, No. 12, 7102, 2017.
doi:10.1109/TAP.2017.2758357

14. Yuan, Y., K. Zhang, B. Ratni, et al. "Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces," Nat. Commun., Vol. 11, 4186, 2020.
doi:10.1038/s41467-020-17773-6

15. Yuan, Y., S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. W. Shah, N. Burokur, and C.-W. Qiu, "A fully phase-modulated metasurface as an energy-controllable circular polarization router," Advanced Science, Vol. 7, 18, 2020.

16. Zhang, K., Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, ACS Applied Materials & Interfaces, Vol. 11, No. 31, 28423-28430, 2019.

17. Chang, K. Y. and G. Varani, "Nucleic acids structure and recognitions," Nat. Struct. Biol., Vol. 4 (suppl.), 854, 1997.

18. Friedberg, E. C., G. C. Walker, and W. Siede, DNA Repair and Mutagenesis, W. H. Freeman and Company, New York, 1995.

19. Nelson, D. L. and M. M. Cox, Lehninger Principles of Biochemistry, W. H. Freeman and Company, 2005.

20. Scopes, R. K., Protein Purification: Principles and Practice, 3rd Ed., Spring-Verlag, New York, 1994.
doi:10.1007/978-1-4757-2333-5

21. Crofts, A. R. and E. A. Berry, "Structure and function of the cytochrome bc1 complex of mitochondria and photosynthetic bacteria," Curr. Opin. Struct. Biol., Vol. 8, 501, 1998.
doi:10.1016/S0959-440X(98)80129-2

22. Michel, H., J. Behr, A. Harrenga, and A. Kannt, "Cytochrome c oxidase: Structure and spectroscopy," Annu. Rev. Biophys. Biomol. Struct., Vol. 27, 329, 1998.
doi:10.1146/annurev.biophys.27.1.329

23. Tsukihara, T., et al., "The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8A," Science, Vol. 272, 113, 1996.

24. Butt, W. D. and D. Keilin, "Absorption spectra and some other properties of cytochrome c and of its compounds with ligands," Proc. R. Soc. Lond. B Biol. Sci., Vol. 156, 429-458, 1962.

25. Mansfield, S. M. and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett., Vol. 57, No. 24, 2615, 1990.
doi:10.1063/1.103828

26. Wu, Q., G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett., Vol. 75, No. 26, 4062, 1999.
doi:10.1063/1.125537

27. Zhang, Y. and W.-H. Zhu, "Electrically tunable optical devices basedon graphene-split-ringresonator periodic multilayers at mid-infrared frequencies," J. Appl. Phys., Vol. 128, 133106, 2020.
doi:10.1063/5.0019943

28. Palik, E. D., Handbook of Optical Constants of Solids, Academic, 1998.

29. Cai, W. and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, 2009.

30. La Spada, L. and L. Vegni, "Near-zero-index wires," Opt. Express, Vol. 25, No. 20, 23699, 2017.
doi:10.1364/OE.25.023699

31. Balanis, C. A., Advanced Electromagnetic Engineering, 2nd Ed., John Wiley & Sons, New York, 2012.

32. Isakov, D. V., et al., "3D printed anisotropic dielectric composite with meta-material features," Mater. Des., Vol. 93, 423, 2016.
doi:10.1016/j.matdes.2015.12.176