Vol. 110
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-21
Design of Dual-Band Conformal AMC Integrated Antenna for SAR Reduction in WBAN
By
Progress In Electromagnetics Research C, Vol. 110, 91-102, 2021
Abstract
A wearable, miniaturized, dual-band, Artificial Magnetic Conductor (AMC) integrated antenna operating on ISM band (2.38-2.47 GHz) and WLAN band (5.11-5.31 GHz) is proposed for Wireless Body Area Network (WBAN). A dumbbell shaped unit-cell is designed to achieve zero reflection phase and modified material characteristics. When 2×2 array of dumbbell shaped AMC is put underneath the monopole, the antenna gain increases up to 9.5 dB and 8.1 dB at 2.43 GHz and 5.2 GHz respectively. Different bending conditions have been considered to confirm the robustness of the AMC antenna. Debye model is used to approximate the dielectric properties within phantom tissue model. Antenna shields most of the backward radiation and reduces the specific absorption rate (SAR) of the integrated antenna by more than 95% in 1-g of phantom hand tissues at both the frequencies. The acquired results exhibit that the AMC antenna is more secure for on body applications.
Citation
Bidisha Hazarika, Banani Basu, and Arnab Nandi, "Design of Dual-Band Conformal AMC Integrated Antenna for SAR Reduction in WBAN," Progress In Electromagnetics Research C, Vol. 110, 91-102, 2021.
doi:10.2528/PIERC20121202
References

1. Zhai, H., K. Zhang, S. Yang, and D. Feng, "A low-profile dual-band dual-polarized antenna with an AMC surface for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2692-2695, 2017.
doi:10.1109/LAWP.2017.2741465

2. Mersani, A., L. Osman, and J.-M. Ribero, "Performance of dual-band AMC antenna for wireless local area network applications," IET Microwave and Antenna Propagation, Vol. 12, No. 6, 872-878, 2018.
doi:10.1049/iet-map.2017.0476

3. Misra, P., S. S. Pattnaik, W. Cao, S. Shi, Q. Wang, and W. Zhong, "Metamaterial loaded fractal based interdigital capacitor antenna for communication systems," Progress In Electromagnetics Research M, Vol. 16, 2473-2476, 2018.

4. Ayd, A. and R. Rad, "Low-profile MIMO antenna arrays with left-handed metamaterial structures for multiband operation," Progress In Electromagnetics Research M, Vol. 89, 1-11, 2020.

5. Moreira, E. C., R. O. Martins, B. M. S. Ribeiro, and A. S. B. Sombra, "A novel gain-enhanced antenna with metamaterial planar lens for long-range UHF RFID applications," Progress In Electromagnetics Research B, Vol. 85, 143-161, 2019.
doi:10.2528/PIERB19081501

6. Kwak, S. I., D.-U. Sim, J. H. Kwon, and Y. J. Yoon, "Design of PIFA with metamaterials for body-SAR reduction in wearable applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 1, 297-300, 2017.
doi:10.1109/TEMC.2016.2593493

7. Cao, Y. F., X. Y. Zhang, and T. Mo, "Low-profile conical-pattern slot antenna with wideband performance using artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2210-2218, 2018.
doi:10.1109/TAP.2018.2809619

8. Alemaryeen, A. and S. Noghanian, "Crumpling effects and specific absorption rates of flexible AMC integrated antennas," IET Microwave and Antenna Propagation, Vol. 12, No. 4, 627-635, 2018.
doi:10.1049/iet-map.2017.0652

9. Wang, M., Z. Yang, J. Wu, J. Bao, J. Liu, L. Cai, T. Dang, H. Zheng, and E. Li, "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3076-3086, 2018.
doi:10.1109/TAP.2018.2820733

10. Lee, H., J. Tak, and J. Choi, "Wearable antenna integrated into military berets for indoor/outdoor positioning system," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1919-1922, 2017.
doi:10.1109/LAWP.2017.2688400

11. Hazarika, B., B. Basu, and A. Nandi, "Design of antennas using artificial magnetic conductor layer to improve gain, flexibility, and specific absorption rate," Microwave and Optical Technology Letters, Vol. 62, No. 12, 3928-3935, 2020.
doi:10.1002/mop.32531

12. Hazarika, B., B. Basu, and A. Nandi, "An artificial magnetic conductor-backed monopole antenna to obtain high gain, conformability, and lower specific absorption rate for WBAN applications," International Journal of RF and Microwave Computer-aided Engineering, Vol. 30, No. 12, 1-9, 2020.
doi:10.1002/mmce.22441

13. Atrash, M. E., M. A. Abdalla, and H. M. Elhennawy, "A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 1-10, 2019.
doi:10.1109/TAP.2019.2923058

14. Atrash, M. E., M. A. Abdalla, and H. M. Elhennawy, "A compact highly efficient-section CRLH antenna loaded with textile AMC for wireless body area network applications," IEEE Transactions on Antennas and Propagation, doi: 10.1109/TAP.2020.3010622.

15. Ghosh, A., S. Chakraborty, S. Chattopadhyay, A. Nandi, and B. Basu, "Rectangular microstrip antenna with dumbbell shaped defected ground structure for improved cross polarised radiation in wide elevation angle and its theoretical analysis," IET Microwave and Antenna Propagation, Vol. 10, No. 1, 1-11, 2016.
doi:10.1049/iet-map.2015.0179

16. Gabriely, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics Medical Biology, Vol. 41, No. 11, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

17. Sievenpiper, D. F., D. C. Dawson, M. M. Jacob, T. Kanar, S. Kim, J. Long, and R. G. Quarfoth, "Experimental validation of performance limits and design guidelines for small antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 8-19, 2012.
doi:10.1109/TAP.2011.2167938