Vol. 86
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-07-31
A Mach-Zehnder Interferometry Method for the Measurement of Photonic State Squeezing in Quantum Cavities
By
Progress In Electromagnetics Research Letters, Vol. 86, 43-51, 2019
Abstract
Recently, manipulation and measurement of quantum states, especially in quantum cavities, have attracted the attention of many researchers in different fields, such as: quantum optics, quantum information, quantum computation, and so on. In this paper a non-demolition method for the measurement of squeezing parameter via atomic Mach-Zehnder interferometer, is presented. An experimental setup was also proposed which included two quantum cavities, in different arms of an atomic Mach-Zehnder interferometer. Each quantum cavity was settled between two classical cavities. Quantum cavities were contained entangled states with arbitrary squeezed photons. It is shown that the outgoing atomic states of Mach-Zehnder interferometer carry on the properties and situation of quantum states of the cavities. The squeezing parameter of photonic state forone of cavities, is obtained by the detection of excited and non-excited probabilities of Mach-Zehnder interferometer's outgoing ports, for a train of incoming two-level Rydberg atoms.
Citation
Siamak Khademi, Ghasem Naeimi, and Ozra Heibati, "A Mach-Zehnder Interferometry Method for the Measurement of Photonic State Squeezing in Quantum Cavities," Progress In Electromagnetics Research Letters, Vol. 86, 43-51, 2019.
doi:10.2528/PIERL19011506
References

1. Einstein, B. P. and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?," Phys. Rev., Vol. 47, 777, 1935.
doi:10.1103/PhysRev.47.777

2. Bohr, N., "Can quantum-mechanical description of physical reality be considered complete?," Phys. Rev., Vol. 48, 696-702, 1935.
doi:10.1103/PhysRev.48.696

3. Sadeghi, P., S. Khademi, and S. Nasiri, "Nonclassicality indicator for the real phase-space distribution function ," Phys. Rev. A, Vol. 82, 012102, 2010.
doi:10.1103/PhysRevA.82.012102

4. Naeimi, G., S. Alipour, and S. Khademi, "A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type atoms," Springer Plus, Vol. 5, 1402, 2016.
doi:10.1186/s40064-016-3014-7

5. He, X. L., Q. P. Su, F. Y. Zhang, and C. P. Yang, "Generating multipartite entangled states of qubits distributed in different cavities," Quantum Information Processing, Vol. 13, 1381-1395, 2014.
doi:10.1007/s11128-014-0734-x

6. Shahidani, S., M. H. Naderi, M. Soltanolkotabi, and S. Barzanjeh, "Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity," JOSA B, Vol. 31, 1087-1095, 2014.
doi:10.1364/JOSAB.31.001087

7. Khademi, S., G. Naeimi, and O. Heibati, "A simple scheme for generation of N-qubits entangled stated," Applied Mathematics and Physics, Vol. 2, 1-3, 2014.

8. Xiong, W. and L. Ye, "Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity," JOSA B, Vol. 28, 2030-2037, 2011.
doi:10.1364/JOSAB.28.002030

9. Wolters, J., J. Kabuss, A. Knorr, and O. Benson, "Deterministic and robust entanglement of nitrogen-vacancy centers using low-Q photonic-crystal cavities," Phys. Rev. A, Vol. 89, 060303(R), 2014.
doi:10.1103/PhysRevA.89.060303

10. Kaiser, F., L. A. Ngah, A. Issautier, T. Delord, D. Aktas, V. DAuria, M. P. De Micheli, A. Kastberg, L. Labonte, O. Alibart, A. Martin, and S. Tanzilli, "Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry," Optics Communications, Vol. 327, 7-16, Special Issue on Nonlinear Quantum Photonics, 2014.
doi:10.1016/j.optcom.2014.03.056

11. Schliemann, J., "Entanglement thermodynamics," J. Stat. Mech., P09011, 2014.
doi:10.1088/1742-5468/2014/09/P09011

12. Brune, M., S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, "Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of ``Schrödinger cat” states," Phys. Rev. A, Vol. 45, 5193, 1992.
doi:10.1103/PhysRevA.45.5193

13. Raimond, J. M., M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys., Vol. 73, 565, 2001.
doi:10.1103/RevModPhys.73.565

14. Khademi, S. and S. Alipour, "A non-demolition photon counting method by four-level inverted Y-type atom," International Journal of Optics and Photonics, Vol. 11, 63-74, 2017.
doi:10.18869/acadpub.ijop.11.1.63

15. Bussieres, F., C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, "Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory," Nature Photonics, Vol. 8, 775-778, 2014.
doi:10.1038/nphoton.2014.215

16. Luda, M. A., M. A. Larotonda, J. P. Paz, and C. T. Schmiegelow, "Manipulating transverse modes of photons for quantum cryptography," Phys. Rev. A, Vol. 89, 042325, 2014.
doi:10.1103/PhysRevA.89.042325

17. Sridhar, N., R. Shahrokhshahi, A. J. Miller, B. Calkins, T. Gerrits, A. Lita, S. W. Nam, and O. Pfister, "Direct measurement of the Wigner function by photon-number-resolving detection," JOSA B, Vol. 31, B34-B40, 2014.
doi:10.1364/JOSAB.31.000B34

18. Banaszek, K., C. Radzewicz, K. Wodkiewicz, and J. S. Krasinski, "Direct measurement of the Wigner function by photon counting," Phys. Rev. A, Vol. 60, 674-677, 1999.
doi:10.1103/PhysRevA.60.674

19. Naeimi, G., S. Khademi, and O. Heibati, "A method for the measurement of photons number and squeezing parameter in a quantum cavity," ISRN Optics, 271951, 2013.

20. Zheng, S. B., "Quantum-information processing and multiatom-entanglement engineering with a thermal cavity," Phys. Rev. A, Vol. 66, 060303(R), 2002.
doi:10.1103/PhysRevA.66.060303

21. Li, W. and I. Lesanovsky, "Entangling quantum gate in trapped ions via Rydberg blockade," Applied Physics B, Vol. 114, 37-44, 2014.
doi:10.1007/s00340-013-5709-6

22. Johansen, L. M., "Bell’s inequality for the Mach-Zehnder interferometer," Phys. Lett. A, Vol. 21, 15-18, 1996.
doi:10.1016/0375-9601(96)00437-9

23. Kang, K. and K. H. Lee, "Violation of Bell’s inequality in electronic Mach-Zehnder interferometers," Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, 1395-1397, 2008.
doi:10.1016/j.physe.2007.09.124

24. Ji, Y., Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H. Shtrikman, "An electronic Mach-Zehnder interferometer," Nature, Vol. 422, 415-418, 2003.
doi:10.1038/nature01503

25. Seigneur, H. P., M. N. Leuenberger, and W. V. Schoenfeld, "Single-photon Mach-Zehnder interferometer for quantum networks based on the single-photon Faraday effect," J. Appl. Phys., Vol. 104, 014307, 2008.
doi:10.1063/1.2948924

26. Carlos Ryff, L. and P. H. Souto Ribeiro, "Mach-Zehnder interferometer for a two-photon wave packet," Phys. Rev. A, Vol. 63, 023801, 2001.
doi:10.1103/PhysRevA.63.023801

27. Vyshnevyy, A. A., G. B. Lesovik, T. Jonckheere, and T. Martin, "Setup of three Mach-Zehnder interferometers for production and observation of Greenberger-Horne-Zeilinger entanglement of electrons," Phys. Rev. B, Vol. 87, 165417, 2013.
doi:10.1103/PhysRevB.87.165417

28. Nady Abdul Aleem, M., K. F. A. Hussein, and A.-E.-H. A.-E.-A. Ammar, "Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Progress In Electromagnetics Research B, Vol. 54, 69-88, 2013.
doi:10.2528/PIERB13063006

29. Dimitriadou, E. and K. E. Zoiros, "On the feasibility of 320 GB/S all-optical and gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Progress In Electromagnetics Research B, Vol. 50, 113-140, 2013.
doi:10.2528/PIERB13013108

30. Gerry, C. and P. Knight, Introductory Quantum Optics, University Press, Cambridge, 2004.
doi:10.1017/CBO9780511791239

31. Scully, M. O. and M. S. Zubairy, Quantum Optics, University Press, Cambridge, 1997.
doi:10.1017/CBO9780511813993