PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 1 > pp. 207-217

THE ELECTROMAGNETIC ION-CYCLOTRON INSTABILITY IN THE PRESENCE OF A.C. ELECTRIC FIELD FOR LORENTZIAN KAPPA

By R. S. Pandey, R. P. Pandey, A. K. Srivastava, S. M. Karim, and Hariom

Full Article PDF (532 KB)

Abstract:
Electromagnetic ion cyclotron (EMIC) waves have been studied in the presence of AC electric field perpendicular to ambient magnetic field in the ionosphere with observed superthermal electrons. The presence of 4 eV-50 eV superthermal electrons have been recently seen by Indian SROSS-C2 satellite, Lorentzian Kappa distribution has been used to derive dispersion relation and growth rate using method of characteristics and kinetic approach. The free energy source like anisotropy in temperature, AC electric field and presence of superthermal electrons affect the growth rate. Lorentzian kappa distribution plays important role in giving the wide spectrum range of emitted frequencies.

Citation:
R. S. Pandey, R. P. Pandey, A. K. Srivastava, S. M. Karim, and Hariom, "The Electromagnetic Ion-Cyclotron Instability in the Presence of a.C. Electric Field for Lorentzian Kappa," Progress In Electromagnetics Research M, Vol. 1, 207-217, 2008.
doi:10.2528/PIERM08032601

References:
1. Dusenbury, P. B. and L. R. Lyons, The Physics of Auroral Arc Formation, 456, AGU Pub., Washington D.C., 1981.

2. Keating, J. G., F. J. Mullingan, D. B. Doyle, K. J. Winser, and M. Lockwood, "A statistical study of large field-aligned flows of thermal ions at high latitudes," Planet Space Sci., Vol. 38, 1187, 1990.
doi:10.1016/0032-0633(90)90026-M

3. Wahlund, J. E. and H. J. Openoorth, "Eiscat observations of strong ion outflows from F-region ionosphere during auroral activity: Preliminary results," Geophysics. Res. Lett., Vol. 16, 727, 1989.
doi:10.1029/GL016i007p00727

4. Yeh, H. C. and J. C. Foster, "Storm tide heavy ion out flow at mid-latitude," J. Geophysics. Res., Vol. 95, 7881, 1990.
doi:10.1029/JA095iA06p07881

5. Bearing, E. A., M. C. Kelley, and F. S. Mozer, J. Geophysics. Res., Vol. 80, 4612, 1975.
doi:10.1029/JA080i034p04612

6. Kelley, M. C., E. A. Bering, and F. S. Mozer, Phys. Fluids, Vol. 18, 1950, 1975.

7. Kintner, P. M., C. Micheal, and M. C. Kelley, J. Geophysics. Res, Vol. 88, 375, 1983.

8. Andersion, B. J., K. Takahashi, R. E. Erlandsion, and L. J. Zanetti, "PC 1 pulsations observed by AMPTE/CCE in the earths outer magnetosphere ," Geophysics. Res. Lett., Vol. 17, No. 11, 1983, 1990.

9. Kennel, C. F. and H. E. Petchek, "Limit on stably trapped particle fluxes," J. Geophysics. Res., Vol. 71, No. 1, 1966.

10. Ludlow, G. R., "Growth of obliquely propagating ion-cyclotron waves in the magnetosphere," J. Geophysics. Res., Vol. 94, 15385, 1989.
doi:10.1029/JA094iA11p15385

11. Ishida, I., S. Kokubun, and R. L. M. Pherron, "Sub storm effects on spectral structures of PC-1 waves at synchronous orbit," J. Geophysics. Res., Vol. 92, 143, 1987.
doi:10.1029/JA092iA01p00143

12. Wandzura, S. and F. V. Coroniti, "Non convective ion-cyclotron instability," Planet Space Sci., Vol. 23, 123, 1975.
doi:10.1016/0032-0633(75)90073-2

13. Roux, A., S. Perrant, J. L. Rauch, C. Devilledary, G. Kremser, A. Korth, and D. T. Young, "Wave-interactions near Ω+He observed on board GEOS-1 and 2, Generation of ion cyclotron waves and heating of He+ ions," J. Geophysics. Res., Vol. 87, 8174, 1982.
doi:10.1029/JA087iA10p08174

14. Horne, R. B. and R. M. Thorne, "On the preferred source location for convective amplification of ion-cyclotron waves," J. Geophysics. Res., Vol. 98, 9233, 1993.
doi:10.1029/92JA02972

15. Loto'aniu, T. M., R. M. Thorne, and B. J. Fraser, "Estimating relativistic electron pitch angle scattering rates using properties of the electromagnetic ion cyclotron wave spectrum ," J. Geophy. Res., Vol. 111, 11452, 2006.

16. Wygant, J. R., M. Bensadoum, and F. S. Mozer, "Electric field measurements at subcritical oblique bow shock crossings," J. Geophysics. Res., Vol. 92, 17109, 1987.

17. Lindqvist, P. A. and F. S. Mozer, "The average tangential electric field at the noon magnetopause," J. Geophysics. Res., Vol. 17, 137, 1990.

18. Perrant, S., R. Gendrin, P. Robert, A. Roux, C. Devilledary, and D. Jones, "ULF waves observed with magnetic and electric sensors on GEOS-1 ," Space Sci. Rev., Vol. 22, 347, 1978.

19. Heppner, J. P., N. C. Maynard, and T. L. Aggson, "Early results from ISEE-1 electric field measurements ," Space Science Rev., Vol. 22, 777, 1978.

20. Mozer, F. S., R. B. Torbert, U. V. Fahleson, C. G. Falthammar, A. Gonfalone, A. Pedersen, and C. T. Russel, "Electric field measurement in the solar wind bow shock, magnetosheath, magnetopause and magnetosphere," Space Sci. Rev., Vol. 22, 791, 1978.

21. Tiwari, M. S. and G. Rostoker, "Field aligned currents and auroral acceleration by non-linear MHD waves," Planet Space Sci., Vol. 32, 1497, 1984.
doi:10.1016/0032-0633(84)90016-3

22. Pandey, R. S., R. P. Pandey, A. K. Srivastava, and K. Dubey, "Analytical study of whistler mode instability with parallel a.c. field by Lorentzian kappa ," Indian Journal of Radio & Space Physics, Vol. 34, 98-105, 2005.


© Copyright 2010 EMW Publishing. All Rights Reserved