PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 7 > pp. 29-39

UNIFORM SCATTERED FIELDS OF THE EXTENDED THEORY OF BOUNDARY DIFFRACTION WAVE FOR PEC SURFACES

By U. Yalcin

Full Article PDF (220 KB)

Abstract:
In this paper, the uniform scattered fields from a perfectly conducting (PEC) half plane are studied with the extended theory of the boundary diffraction wave. A new vector potential of the boundary diffraction wave is found by considering the Fermat principle for the PEC surfaces. This vector potential is applied to the Helmholtz-Kirchhoff integral, and the theory of the boundary diffraction wave is extended to the PEC surfaces. The extended theory of the boundary diffraction wave is then applied to the scattering problem for the PEC half plane. The total scattered fields are compared numerically with the exact solution for the same problem. The numerical comparisons given in the paper show that the solution of the extended theory of the boundary diffraction wave is very close to the exact solution.

Citation:
U. Yalcin, "Uniform Scattered Fields of the Extended Theory of Boundary Diffraction Wave for PEC Surfaces," Progress In Electromagnetics Research M, Vol. 7, 29-39, 2009.
doi:10.2528/PIERM09031201

References:
1. Young, T., "On the theory of light and colours," Phill. Trans. R. Soc., Vol. 20, 12-48, 1802.
doi:10.1098/rstl.1802.0004

2. Maggi, G. A., "Sulla propagazione libra e perturbata delle onde luminose in un mezzo izotropo," Ann. di Mat. IIa, Vol. 16, 21-48, 1888.
doi:10.1007/BF02420290

3. Rubinowicz, A., "Die beugungswelle in der Kirchoffschen theorie der beugungsercheinungen," Ann. Physik, Vol. 4, 257-278, 1917.
doi:10.1002/andp.19173581202

4. Miyamoto, K. and E. Wolf, "Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave --- Part I," J. Opt. Soc. Am., Vol. 52, 615-625, 1962.
doi:10.1364/JOSA.52.000615

5. Miyamoto, K. and E. Wolf, "Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave --- Part II," J. Opt. Soc. Am., Vol. 52, 626-637, 1962.
doi:10.1364/JOSA.52.000626

6. Lit, J. W. Y., "Boundary-diffraction waves due to a general point source and their applications to aperture systems," J. Modern Opt., Vol. 19, 1007-1014, 1972.
doi:10.1080/713818522

7. Otis, G., "Application of the boundary-diffraction-wave theory to Gaussian beams," J. Opt. Soc. Am., Vol. 64, 1545-1550, 1974.
doi:10.1364/JOSA.64.001545

8. Ganci, S., "Boundary diffraction wave theory for rectilinear apertures," Eur. J. Phys., Vol. 18, 229-236, 1997.
doi:10.1088/0143-0807/18/3/018

9. Ganci, S., Diffracted wavefield by an arbitrary aperture from Maggi-Rubinowicz transformation: Fraunhofer approximation, Optik, doc. ID 10.1016/j.ijleo.2006.06.007, 2006.

10. Otis, G., "Edge-on diffraction of a Gaussian laser beam by a semi-infinite plane," App. Optics, Vol. 14, 1156-1160, 1975.
doi:10.1364/AO.14.001156

11. Ganci, S., "A general scalar solution for the half-plane problem," J. Modern Opt., Vol. 42, 1707-1711, 1995.
doi:10.1080/09500349514551491

12. Ganci, S., "Half-plane diffraction in a case of oblique incidence," J. Modern Opt., Vol. 43, 2543-2551, 1996.

13. Umul, Y. Z. and U. Yalcin, "The effect of impedance boundary wave theory," Opt. Communication, Vol. 281, 23-27, 2008.
doi:10.1016/j.optcom.2007.09.010

14. Umul, Y. Z., "Uniform line integral representation of edge-diffracted fields," J. Opt. Soc. Am., Vol. 25, 133-137, 2008.
doi:10.1364/JOSAA.25.000133

15. Tang, L., et al., "Analysis of near-field diffraction pattern of metallic probe tip with the boundary diffraction wave method," Chin. Phys. Lett., Vol. 22, 2443-2446, 2005.
doi:10.1088/0256-307X/22/9/084

16. Kumar, R., D. P. Chhachhia, and A. K. Aggarwal, "Folding mirror schlieren diffraction interferometer," App. Optics, Vol. 45, 6708-6711, 2006.
doi:10.1364/AO.45.006708

17. Banai, A. and A. Hashemi, "A hybrid multimode contour integral method for analysis of the H-plane waveguide discontinuities," Progress In Electromagnetics Research, Vol. 81, 167-182, 2008.
doi:10.2528/PIER07122601

18. Miyamoto, K., "New representation wave field," Proc. Phys. Soc., Vol. 79, 617-629, 1962.
doi:10.1088/0370-1328/79/3/319

19. Keller, J. B., "Geometrical optics theory of diffraction," J. Opt. Soc. Am., Vol. 52, 116-130, 1962.
doi:10.1364/JOSA.52.000116

20. Baker, B. B. and E. T. Copson, The Mathematical Theory of Huygens'Principle, Oxford at the Clarendon Press, 1949.

21. Lee, S. W. and G. A. Deschamps, "A uniform asymptotic theory of electromagnetic diffraction by a curved wedge," IEEE Trans. Antennas & Propagat., Vol. 24, 25-34, 1976.
doi:10.1109/TAP.1976.1141283

22. Lee, S. W., "Comparison of uniform asymptotic theory and Ufimtsev's theory of electromagnetic edge diffraction," IEEE Trans. Antennas & Propagat., Vol. 25, 162-170, 1977.
doi:10.1109/TAP.1977.1141559

23. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice-Hall Inc., 1991.


© Copyright 2010 EMW Publishing. All Rights Reserved