1. Kung, F. and H. Chuah, "Modeling of bipolar junction transistor in FDTD simulation of printed circuit board," Progress In Electromagnetics Research, Vol. 36, 179-192, 2002.
doi:10.2528/PIER02013001 Google Scholar
2. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to microwave/MM-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401 Google Scholar
3. Alsunaidi, M. A., S. M. S. Imtiaz, and S. M. El-Ghazaly, "Electromagnetic wave effects on microwave transistors using a full-wave time-domain model," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 6, 799-808, Jun. 1996.
doi:10.1109/22.506437 Google Scholar
4. Feng, Y. K. and A. Hintz, "Simulation of sub-micrometer GaAs MESFET's using a full dynamic transport model," IEEE Trans. Electron Devices, Vol. 35, 1419-1431, Sep. 1988.
doi:10.1109/16.2574 Google Scholar
5. Li, Z.-M., "Two-dimensional numerical simulation of semiconductor lasers," Progress In Electromagnetics Research, Vol. 11, 301-344, 1995. Google Scholar
6. Liu, Q. H., C. Cheng, and H. Z. Massoud, "The spectral grid method: A novel fast SchrÄodinger-equation solver for semiconductor nanodevice simulation," IEEE Trans. Computeraided Design Integ. Circuit Sys., Vol. 23, No. 8, Aug. 2004. Google Scholar
7. Cheng, C., J.-H. Lee, K. H. Lim, H. Z. Massoud, and Q. H. Liu, "3D quantum transport solver based on the perfectly matched layer and spectral element methods for the simulation of semiconductor nanodevices," Journal of Comput. Physics, Vol. 227, No. 1, 455-471, Nov. 2007.
doi:10.1016/j.jcp.2007.07.028 Google Scholar
8. Namiki, T., "3-D ADI-FDTD method --- Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1743-1748, Oct. 2000.
doi:10.1109/22.873904 Google Scholar
9. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method ," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.869007 Google Scholar
10. Kong, K. B., S. O. Park, and J. S. Kim, "Stability and numerical dispersion of 3-D Simplified sampling biorthogonal adi method," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 1-12, 2010.
doi:10.1163/156939310790322136 Google Scholar
11. Rouf, H. K., F. Costen, S. G. Garcia, and S. Fujino, "On the solution of 3-D Frequency dependent crank-nicolson FDTD scheme," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2163-2175, 2009.
doi:10.1163/156939309790109261 Google Scholar
12. Movahhedi, M. and A. Abdipour, "Efficient numerical methods for simulation of high-frequency active devices," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2636-2645, Jun. 2006.
doi:10.1109/TMTT.2006.872937 Google Scholar
13. Cangellaris, A. C. and R. Lee, "On the accuracy of numerical wave simulations based on finite methods," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 12, 1635-1653, 1992.
doi:10.1163/156939392X00779 Google Scholar
14. Castillo, S. and S. Omick, "Suppression of dispersion in FDTD solutions of Maxwell's equations," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 9-10, 1193-1221, 1994.
doi:10.1163/156939394X01000 Google Scholar
15. Garcia, S. G., F. Costen, M. F. Pantojal, A. Brown, and A. R. Bretones, "Open issues in unconditionally stable schemes," Progress In Electromagnetics Research Symposium Abstracts, Vol. 841, Beijing, 2009. Google Scholar
16. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements --- A new perspective," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 9, 1313-1314, 2003.
doi:10.1163/156939303322520061 Google Scholar
17. Liang, F. and G. Wang, "Fourth-order locally one-dimensional FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2035-2043, 2008.
doi:10.1163/156939308787538017 Google Scholar
18. Zhou, X. and H. Tan, "Monte Carlo formulation of field-dependent mobility for AIxGa1-xAs," Solid-Sate Electronics, Vol. 38, 567-569, 1994. Google Scholar
19. Morton, K. W. and D. F. Mayers, Numerical Solution of Partial Differential Equations, 2nd Ed., University Press, 2005.
doi:10.1017/CBO9780511812248
20. Bau III, D. and L. N. Trefethen, "Numerical linear algebra," Philadelphia: Society for Industrial and Applied Mathematics, 1997. Google Scholar
21. Tomizawa, K., Numerical Simulation of Submicron Semiconductor Devices, Artech House, 1993.
22. Sun, G. and C. Trueman, "A simple method to determine the time-step size to achieve a desired dispersion accuracy in ADI-FDTD," Microw. Optic. Tech. Lett., Vol. 40, No. 6, Mar. 2004. Google Scholar
23. Hussein, Y. A. and S. M. El-Ghazaly, "Extending multiresolution timedomain (MRTD) technique to the simulation of high-frequency active devices," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 7, 1842-1851, Jul. 2003.
doi:10.1109/TMTT.2003.814315 Google Scholar