Vol. 11

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-02-26

Full-Wave Semiconductor Devices Simulation Using Adi-FDTD Method

By Rashid Mirzavand, Abdolali Abdipour, Gholamreza Moradi, and Masoud Movahhedi
Progress In Electromagnetics Research M, Vol. 11, 191-202, 2010
doi:10.2528/PIERM10010604

Abstract

This paper describes the alternating-direction implicit finite-difference time-domain (ADI-FDTD) method for physical modeling of high-frequency semiconductor devices. The model contains the semiconductor equations in conjunction with the Maxwell's equations which describe the complete behavior of high-frequency active devices. Using ADI approach leads to a significant reduction of the full-wave simulation time. We can reach over 99% reduction in the simulation time by using this technique while still have a good degree of accuracy compared to the conventional approaches. As the first step in the performance investigation, we use the electrons flow equations in the absence of holes and recombination as semiconductor equations in this paper.

Citation


Rashid Mirzavand, Abdolali Abdipour, Gholamreza Moradi, and Masoud Movahhedi, "Full-Wave Semiconductor Devices Simulation Using Adi-FDTD Method," Progress In Electromagnetics Research M, Vol. 11, 191-202, 2010.
doi:10.2528/PIERM10010604
http://www.jpier.org/PIERM/pier.php?paper=10010604

References


    1. Kung, F. and H. Chuah, "Modeling of bipolar junction transistor in FDTD simulation of printed circuit board," Progress In Electromagnetics Research, Vol. 36, 179-192, 2002.
    doi:10.2528/PIER02013001

    2. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to microwave/MM-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
    doi:10.2528/PIER07081401

    3. Alsunaidi, M. A., S. M. S. Imtiaz, and S. M. El-Ghazaly, "Electromagnetic wave effects on microwave transistors using a full-wave time-domain model," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 6, 799-808, Jun. 1996.
    doi:10.1109/22.506437

    4. Feng, Y. K. and A. Hintz, "Simulation of sub-micrometer GaAs MESFET's using a full dynamic transport model," IEEE Trans. Electron Devices, Vol. 35, 1419-1431, Sep. 1988.
    doi:10.1109/16.2574

    5. Li, Z.-M., "Two-dimensional numerical simulation of semiconductor lasers," Progress In Electromagnetics Research, Vol. 11, 301-344, 1995.

    6. Liu, Q. H., C. Cheng, and H. Z. Massoud, "The spectral grid method: A novel fast SchrÄodinger-equation solver for semiconductor nanodevice simulation," IEEE Trans. Computeraided Design Integ. Circuit Sys., Vol. 23, No. 8, Aug. 2004.

    7. Cheng, C., J.-H. Lee, K. H. Lim, H. Z. Massoud, and Q. H. Liu, "3D quantum transport solver based on the perfectly matched layer and spectral element methods for the simulation of semiconductor nanodevices," Journal of Comput. Physics, Vol. 227, No. 1, 455-471, Nov. 2007.
    doi:10.1016/j.jcp.2007.07.028

    8. Namiki, T., "3-D ADI-FDTD method --- Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1743-1748, Oct. 2000.
    doi:10.1109/22.873904

    9. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method ," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
    doi:10.1109/22.869007

    10. Kong, K. B., S. O. Park, and J. S. Kim, "Stability and numerical dispersion of 3-D Simplified sampling biorthogonal adi method," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 1-12, 2010.
    doi:10.1163/156939310790322136

    11. Rouf, H. K., F. Costen, S. G. Garcia, and S. Fujino, "On the solution of 3-D Frequency dependent crank-nicolson FDTD scheme," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2163-2175, 2009.
    doi:10.1163/156939309790109261

    12. Movahhedi, M. and A. Abdipour, "Efficient numerical methods for simulation of high-frequency active devices," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2636-2645, Jun. 2006.
    doi:10.1109/TMTT.2006.872937

    13. Cangellaris, A. C. and R. Lee, "On the accuracy of numerical wave simulations based on finite methods," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 12, 1635-1653, 1992.
    doi:10.1163/156939392X00779

    14. Castillo, S. and S. Omick, "Suppression of dispersion in FDTD solutions of Maxwell's equations," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 9-10, 1193-1221, 1994.
    doi:10.1163/156939394X01000

    15. Garcia, S. G., F. Costen, M. F. Pantojal, A. Brown, and A. R. Bretones, "Open issues in unconditionally stable schemes," Progress In Electromagnetics Research Symposium Abstracts, Vol. 841, Beijing, 2009.

    16. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements --- A new perspective," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 9, 1313-1314, 2003.
    doi:10.1163/156939303322520061

    17. Liang, F. and G. Wang, "Fourth-order locally one-dimensional FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2035-2043, 2008.
    doi:10.1163/156939308787538017

    18. Zhou, X. and H. Tan, "Monte Carlo formulation of field-dependent mobility for AIxGa1-xAs," Solid-Sate Electronics, Vol. 38, 567-569, 1994.

    19. Morton, K. W. and D. F. Mayers, Numerical Solution of Partial Differential Equations, 2nd Ed., University Press, New York, Cambridge, 2005.
    doi:10.1017/CBO9780511812248

    20. Bau III, D. and L. N. Trefethen, "Numerical linear algebra," Philadelphia: Society for Industrial and Applied Mathematics, 1997.

    21. Tomizawa, K., Numerical Simulation of Submicron Semiconductor Devices, Artech House, Norwood, MA, 1993.

    22. Sun, G. and C. Trueman, "A simple method to determine the time-step size to achieve a desired dispersion accuracy in ADI-FDTD," Microw. Optic. Tech. Lett., Vol. 40, No. 6, Mar. 2004.

    23. Hussein, Y. A. and S. M. El-Ghazaly, "Extending multiresolution timedomain (MRTD) technique to the simulation of high-frequency active devices," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 7, 1842-1851, Jul. 2003.
    doi:10.1109/TMTT.2003.814315