PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 16 > pp. 19-29

UWB MICROWAVE IMAGING FOR BREAST CANCER DETECTION --- EXPERIMENTS WITH HETEROGENEOUS BREAST PHANTOMS

By J. C. Y. Lai, C. B. Soh, E. Gunawan, and K. S. Low

Full Article PDF (514 KB)

Abstract:
The paper describes pulse-based ultra-wideband (UWB) microwave imaging experiments for breast cancer detection using heterogeneous breast phantoms with dielectric properties mimicking the human breast. Three homogeneous and seven heterogeneous breast phantoms are used in tumor detection experiments. The phantoms have dielectric permittivity and conductivity higher than previously reported experiments, as well as clutters to represent the glandular tissue in human breast. The experiments are conducted in time-domain with pulse generator and real-time oscilloscope.

Citation:
J. C. Y. Lai, C. B. Soh, E. Gunawan, and K. S. Low, "UWB Microwave Imaging for Breast Cancer Detection --- Experiments with Heterogeneous Breast Phantoms," Progress In Electromagnetics Research M, Vol. 16, 19-29, 2011.
doi:10.2528/PIERM10072001

References:
1. Li, X. , S. C. Hagness, and , "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, Mar. 2001.
doi:10.1109/7260.915627

2. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near-field imaging ," IEEE Microwave Magazine, Vol. 3, 48-56, Mar. 2002.
doi:10.1109/6668.990683

3. Li, X., S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multi-layer breast phantoms," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1856-1865, Aug. 2004.
doi:10.1109/TMTT.2004.832686

4. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection --- Experimental investigation of simple tumor models," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3312-3319, Nov. 2005.
doi:10.1109/TMTT.2005.857330

5. Salvador, S. M. and G. Vecchi, "Experimental tests of microwave breast cancer detection on phantoms," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1705-1712, Jun. 2009.
doi:10.1109/TAP.2009.2019901

6. Klemm, M. , J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1349-1352, 2009.
doi:10.1109/LAWP.2009.2036748

7. Lazebnik , M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Physics in Medicine and Biology, Vol. 50, 4245-4258, 2005.
doi:10.1088/0031-9155/50/18/001

8. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "Homo-geneous and heterogeneous breast phantoms for ultra-wideband microwave imaging applications," Progress In Electromagnetics Research, Vol. 100, 397-415, 2010.
doi:10.2528/PIER09121103

9. Lazebnik, M. , L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, and M. Okoniewski, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, May 2007.
doi:10.1088/0031-9155/52/10/001

10. Chua, L. W., "A new UWB antenna with excellent time domain characteristics," Proc. The European Conference on Wireless Technology, 531-534, Oct. 2005.

11. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglan- dular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701


© Copyright 2010 EMW Publishing. All Rights Reserved