Vol. 14

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-11-12

Halbach Structures for Permanent Magnets Bearings

By Romain Ravaud, Guy Lemarquand, and Valerie Lemarquand
Progress In Electromagnetics Research M, Vol. 14, 263-277, 2010
doi:10.2528/PIERM10100401

Abstract

This paper is the third part of a series dealing with permanent magnet passive magnetic bearings. It presents analytical expressions of the axial force and stiffness in radial passive magnetic bearings made of ring permanent magnets with perpendicular polarizations: the inner ring polarization is perpendicular to the outer ring one. The main goal of this paper is to present a simple analytical model which can be easily implemented in Matlab or Mathematica so as to carry out parametric studies. This paper first compares the axial force and stiffness in bearings with axial, radial and perpendicular polarizations. Then, bearings made of stacked ring magnets with alternate polarizations are studied for the three kinds of polarizations, axial, radial and perpendicular. The latter correspond to Halbach structures. These calculations are useful for identifying the structures required for having great axial forces and the ones allowing to get great axial stiffnesses.

Citation


Romain Ravaud, Guy Lemarquand, and Valerie Lemarquand, "Halbach Structures for Permanent Magnets Bearings," Progress In Electromagnetics Research M, Vol. 14, 263-277, 2010.
doi:10.2528/PIERM10100401
http://www.jpier.org/PIERM/pier.php?paper=10100401

References


    1. Delamare, J., E. Rulliere, and J. P. Yonnet, "Classification and synthesis of permanent magnet bearing configurations," IEEE Trans. Magn., Vol. 31, No. 6, 4190-4192, 1995.
    doi:10.1109/20.489922

    2. Ravaud, R., et al., "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, 2009.
    doi:10.1109/TMAG.2009.2016088

    3. Ravaud, R., et al., "Force and stiffness of passive magnetic bearings using permanent magnets. Part 2: Radial magnetization," IEEE Trans. Magn., Vol. 45, No. 9, 3334-3342, 2009.
    doi:10.1109/TMAG.2009.2025315

    4. Azzerboni, B., E. Cardelli, and A. Tellini, "Computation of the magnetic field in massive conductor systems," IEEE Trans. Magn., Vol. 25, No. 6, 4462-4473, 1989.
    doi:10.1109/20.45327

    5. Furlani, E. P., S. Reznik, and A. Kroll, "A three-dimensonal field solution for radially polarized cylinders," IEEE Trans. Magn.,, Vol. 31, No. 1, 844-851, 1995.
    doi:10.1109/20.364587

    6. Kim, K., et al., "Mutual inductance of noncoaxial circular coils with constant current density," IEEE Trans. Magn., Vol. 33, No. 5, 4303-4309, 1997.
    doi:10.1109/20.620439

    7. Babic, S., et al., "Analytical calculation of the 3d magnetostatic ¯eld of a torroidal conductor with rectangular cross section ," IEEE Trans. Magn., Vol. 24, No. 6, 3162-3164, 1988.
    doi:10.1109/20.92368

    8. Ravaud, R. and G. Lemarquand, "Comparison of the coulombian and amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.
    doi:10.2528/PIER09042105

    9. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
    doi:10.2528/PIERB08112102

    10. Babic, S. I. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research C, Vol. 5, 71-82, 2008.

    11. Ravaud, R., et al., "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
    doi:10.1109/TMAG.2008.923096

    12. Ravaud, R., , G. Lemarquand, and V. Lemarquand, "Magnetic field created by tile permanent magnets," IEEE Trans. Magn., Vol. 45, No. 7, 2920-2926, 2009.
    doi:10.1109/TMAG.2009.2014752

    13. Selvaggi, J. P., et al., "Calculating the external magnetic field from permanent magnets in permanent-magnet motors --- An alternative method," IEEE Trans. Magn., Vol. 40, No. 5, 3278-3285, 2004.
    doi:10.1109/TMAG.2004.831653

    14. Blache, C. and G. Lemarquand, "New structures for linear displacement sensor with hight magnetic field gradient," IEEE Trans. Magn., Vol. 28, No. 5, 2196-2198, 1992.
    doi:10.1109/20.179441

    15. Azzerboni, B., et al., "Analytic expressions for magnetic field from finite curved conductors," IEEE Trans. Magn., Vol. 27, No. 2, 750-757, 1991.
    doi:10.1109/20.133288

    16. Akoun, G. and J. P. Yonnet, "3d analytical calculation of the forces exerted between two cuboidal magnets," IEEE Trans. Magn., Vol. 20, No. 5, 1962-1964, 1984.
    doi:10.1109/TMAG.1984.1063554

    17. Lemarquand, V., J. F. Charpentier, and G. Lemarquand, "Nonsinusoidal torque of permanent-magnet couplings," IEEE Trans. Magn., Vol. 35, No. 5, 4200-4205, 1999.
    doi:10.1109/20.799068

    18. Lang, M., "Fast calculation method for the forces and stiffnesses of permanent-magnet bearings," 8th International Symposium on Magnetic Bearing, 533-537, 2002.

    19. Ohji, T., et al., "Performance of repulsive type magnetic bearing system under nonuniform magnetization of permanent magnet," IEEE Trans. Magn., Vol. 36, No. 5, 3696-3698, 2000.
    doi:10.1109/20.908944

    20. Samanta, P. and H. Hirani, "Magnetic bearing configurations: Theoretical and experimental studies," IEEE Trans. Magn., Vol. 44, No. 2, 292-300, 2008.
    doi:10.1109/TMAG.2007.912854

    21. Hussien, A., et al., "Application of the repulsive-type magnetic bearing for manufacturing micromass measurement balance equipment," IEEE Trans. Magn., Vol. 41, No. 10, 3802-3804, 2005.
    doi:10.1109/TMAG.2005.854929

    22. Mukhopadhyay, S. C., et al., "Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension," IEEE Trans. Magn., Vol. 39, No. 5, 3220-3222, 2003.
    doi:10.1109/TMAG.2003.816727

    23. Janssen, J., et al., "Three-dimensional analytical calculation of the torque between permanent magnets in magnetic bearings," IEEE Trans. Mag., Vol. 46, No. 6, 1748-1751, 2010.
    doi:10.1109/TMAG.2010.2043224

    24. Azukizawa, T., S. Yamamoto, and N. Matsuo, "Feasibility study of a passive magnetic bearing using the ring shaped permanent magnets," IEEE Trans. Magn., Vol. 44, No. 11, 4277-4280, 2008.
    doi:10.1109/TMAG.2008.2001490

    25. Hijikata, K., et al., "Behavior of a novel thrust magnetic bearing with a cylindrical rotor on high speed rotation," IEEE Trans. Magn., Vol. 45, No. 10, 4617-4620, 2009.
    doi:10.1109/TMAG.2009.2022178

    26. Filatov, A. and E. Maslen, "Passive magnetic bearing for flywheel energy storage systems," IEEE Trans. Magn., Vol. 37, No. 6, 3913-3924, 2001.
    doi:10.1109/20.966127

    27. Moser, R., J. Sandtner, and H. Bleuler, "Optimization of repulsive passive magnetic bearings," IEEE. Trans. Magn., Vol. 42, No. 8, 2038-2042, 2006.
    doi:10.1109/TMAG.2005.861160

    28. Halbach, K., "Design of permanent multiple magnets with oriented rec material ," Nucl. Inst. Meth., Vol. 169, 1-10, 1980.
    doi:10.1016/0029-554X(80)90094-4

    29. Ravaud, R. and G. Lemarquand, "Discussion about the magnetic field produced by cylindrical halbach structures," Progress In Electromagnetics Research B, Vol. 13, 275-308, 2009.
    doi:10.2528/PIERB09012004