Vol. 20
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-08-19
Fast Computation of Dipole Radiation in Stratified Background Using Graphics Processing Unit
By
Progress In Electromagnetics Research M, Vol. 20, 115-126, 2011
Abstract
We present the GPUs computation acceleration for a very recurrent electromagnetic problem which is the calculation of the field radiated by electric dipoles in a multilayer structure (Green's tensor in stratified background), based on the well-known Sommerfeld integrals. Using an optimized parallelization scheme, huge computation acceleration is obtained. Applications of such a work are very broad, especially for the modeling of stratified light emitting devices, or as a building block for the calculation of optical scattering by complex shape structures, when using methods as discrete dipole approximation (DDA) or method of moments (MoM) for example.
Citation
M. Quinto, Salim Boutami, and J. Hazart, "Fast Computation of Dipole Radiation in Stratified Background Using Graphics Processing Unit," Progress In Electromagnetics Research M, Vol. 20, 115-126, 2011.
doi:10.2528/PIERM11052505
References

1. Purcell, E. M. and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophysical Journal, Vol. 186, 705, 1973.
doi:10.1086/152538

2. Harrington, R. F., Field Computation by Moment Methods, Krieger Publishing Co., Inc., 1968.

3. Hafner, C., The Generalized Multipole Technique for Computational Electromagnetics, Artech, 1990.

4. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

5. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

6. Sommerfeld, A., "Propagation of waves in wireless telegraphy," Ann. Phys. (Leipzig), Vol. 28, 665-737, 1909.

7. Michalski, K. A. and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 508-519, March 1997.
doi:10.1109/8.558666

8. Barkeshli, S., P. H. Pathak, and M. Marin, "An asymptotic closed-form microstrip surface Green's function for the efficient moment method analysis of mutual coupling in microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 9, 1374-1383, September 1990.
doi:10.1109/8.56988

9. Ayatollahi, M. and S. Safavi-Naeini, "A new representation for the Green's function of multilayer media based on plane wave expansion," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1548-1557, June 2004.
doi:10.1109/TAP.2004.829849

10. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closed-form spatial Green's function for the thick microstrip substrate," IEEE Trans Microw. Theory Tech., Vol. 39, No. 3, 588-592, March 1991.
doi:10.1109/22.75309

11. Ling, F. and J.-M. Jin, "Discrete complex image method for Green's functions of general multilayer media," IEEE Microw. Guided wave Lett., Vol. 10, 400-402, October 2000.

12. Yuan, M. and T. K. Sarkar, "Computation of the Sommerfeld integral tails using the matrix pencil method," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1358, April 2006.
doi:10.1109/TAP.2006.872656

13. Paulus, M., P. Gay-Balmaz, and O. J. F. Martin, "Accurate and efficient computation of the Green's tensor for stratified media," Physical Review E, Vol. 62, No. 4, 5797-5807, October 2000.
doi:10.1103/PhysRevE.62.5797

14. Novotny, L., "Allowed and forbidden light in near-field optics in a single dipolar light source," JOSA B, Vol. 14, 91-104, 1997.

15. Xu, , X.-B. and Y. F. Huang, "An efficient analysis of vertical dipole antennas above a lossy half-space," Progress In Electromagnetics Research, Vol. 74, 353-377, 2007.
doi:10.2528/PIER07052202

16. Jarchi, S., J. Rashed-Mohassel, and R. Faraji-Dana, "Analysis of microstrip dipole antennas on a layered metamaterial substrate," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 755-764, 2010.
doi:10.1163/156939310791036278

17. Parise, M., "Exact electromagnetic field excited by a vertical magnetic dipole on the surface of a lossy half-space," Progress In Electromagnetics Research B, Vol. 23, 69-82, 2010.
doi:10.2528/PIERB10060707

18. Poljak, D. and V. Doric, "Wire antenna of simple grounding systems, Part I: The vertical grounding electrode," Progress In Electromagnetics Research, Vol. 64, 149-166, 2006.
doi:10.2528/PIER06062101

19. Poljak, D. and V. Doric, "Wire antenna model for transient analysis of simple grounding systems, Part II: The horizontal grounding electrode," Progress In Electromagnetics Research, Vol. 64, 167-189, 2006.
doi:10.2528/PIER06062102

20. Gao, P. C., Y.-B. Tao, and H. Lin, "Fast RCS prediction using multiresolution shooting and bouncing ray method on the GPU," Progress In Electromagnetics Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807

21. Tao, Y.-B., H. Lin, and H. J. Bao, "From CPU to GPU: GPU-based electromagnetic computing (GPUECO)," Progress In Electromagnetics Research, Vol. 81, 1-19, 2008.
doi:10.2528/PIER07121302

22. Zainud-Deen, S. H., E. Hassan, M. S. Ibrahim, K. H. Awadalla, and A. Z. Botros, "Electromagnetic scattering using GPU-based finite difference frequency domain method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009.
doi:10.2528/PIERB09060703

23. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

24. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605

25. De Donno, D., A. Esposito, and L. Tarricone, "Introduction to GPU computing and CUDA programming: A case study on FDTD," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 116-122, June 2010.
doi:10.1109/MAP.2010.5586593

26. De Donno, D., A. Esposito, G. Monti, and L. Tarricone, "Parallel efficient method of moments exploiting graphics processing units," Microwave and Optical Technology Letters, Vol. 52, No. 11, 2568-2572, November 2010.
doi:10.1002/mop.25534

27. De Donno, D., A. Esposito, G. Monti, and L. Tarricon, "GPU-based acceleration of MPIE/MoM matrix calculation for the analysis of microstrip circuits," The 5th European Conference on Antennas and Propagation (EuCAP), 1-15, Rome, Italy, April 2011.

28. Peng, S. and N. Zaiping, "Acceleration of the method of moments calculations by using graphics processing units," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 2130-2133, July 2008.
doi:10.1109/TAP.2008.924768

29. Halfhill, T. R., "Parallel processing with CUDA," Microprocessor Report, 2008.

30., Nvidia, "Programming guide version 1.0,", 2007, http://developer.download.nvidia.com/compute/cuda/1 0/NVIDIA CUDA Programming Guide 1.0.pdf.

31. and MatlabWorks, "Numerically evaluate integral, adaptive GaussKronrod quadrature,", http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ quadgk.html.

32. Zhang, S. and J. Jin, "Computation of special functions,", http://jin.ece.uiuc.edu/routines/routines.html.

33., MathWorks, "Mex-file guide,", http://www.mathworks.com/support/tech-notes/1600/1605.html.

34., Nvidia, "Accelerating matlab with cuda using mex file,", http://www.developer.download.nvidia.com/compute/cuda/1 0/AcceleratingtextdiscountMatlabndiscount20withntextdiscount20-CUDA.pdf.