PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 20 > pp. 191-205

CAUSTIC REGION FIELDS OF A 3D CASSEGRAIN SYSTEM PLACED IN BI-ISOTROPIC HOMOGENEOUS CHIRAL MEDIUM

By Arshad, M. Q. Mehmood, and M. J. Mughal

Full Article PDF (319 KB)

Abstract:
This paper presents the electromagnetic field expressions for 3D cassegrain system embedded in a bi-isotropic chiral medium. Mathematical formulation of Maslov is used to find the field expressions in the focal region. Effect of chirality (both the week and strong) on focal region fields is analyzed. It is seen that when the chirality effect is weak (i.e., κ < 1), chiral medium will support positive phase velocity (PPV) for both the left circularly polarized (LCP) and the right circularly polarized (RCP) modes. However for strong chiral medium (i.e., κ > 1), one mode travels with PPV and the other mode travels with negative phase velocity (NPV). The line plots are given to show the behavior of fields in the focal plane of 3D cassegrain system by changing the chirality parameter (κ).

Citation:
Arshad, M. Q. Mehmood, and M. J. Mughal, "Caustic Region Fields of a 3D Cassegrain System Placed in BI-Isotropic Homogeneous Chiral Medium," Progress In Electromagnetics Research M, Vol. 20, 191-205, 2011.
doi:10.2528/PIERM11080805

References:
1. Zouhdi, S., A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, Springer, 2008.

2. Mehmood, M. Q., M. J. Mughal, and T. Rahim, "Focal region fields of Gregorian system placed in homogeneous chiral medium," Progress In Electromagnetics Research M, Vol. 11, 241-256, 2010.
doi:10.2528/PIERM10031104

3. Mehmood, M. Q. and M. J. Mughal, "Analysis of focal region fields of PEMC Gregorian system embeded in homogeneous chiral medium," Progress In Electromagnetics Research Letters, Vol. 18, 155-163, 2010.
doi:10.2528/PIERL10100301

4. Mehmood, M. Q., M. J. Mughal, and T. Rahim, "Focal region fields of Cassegrain system placed in homogeneous chiral medium," Progress In Electromagnetics Research B, Vol. 21, 329-346, 2010.

5. Dong, W. T., L. Gao, and C. W. Qiu, "Goos-Hanchen shift at the surface of chiral negative refractive media," Progress In Electromagnetics Research, Vol. 90, 255-268, 2009.
doi:10.2528/PIER08122002

6. Qiu, C. W., H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Backward waves in magnetoelectrically chiral media: Propagation, impedance, and negative refraction," Physical Review B, Vol. 75, 155120, 2007.

7. Maslov, V. P., "Perturbation theory and asymptotic methods,", Izdat. Moskov. Gos. Univ., Moscow, 1965 (in Russian)..

8. Maslov, V. P. and V. E. Nazaikinski, "Asymptotics of operator and pseudo-differential equations," Consultants Bureau, N.Y., 1988.

9. Lakhtakia, A., V. V. Varadan, and V. K. Varadan, "What happens to plane waves at the planar interfaces of mirror conjugated chiral media," Journal of the Optical Society of America A: Optics, Image Science, and Vision, Vol. 6, No. 1, 2326, January 1989.

10. Rahim, T., M. J. Mughal, Q. A. Naqvi, and M. Faryad, "Paraboloidal reflector in chiral medium supporting simultaneously positive phase velocity and negative phase velocity," Progress In Electromagnetics Research, Vol. 92, 223-234, 2009.
doi:10.2528/PIER09031809

11. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in three dimensional Cassegrain system," Progress In Electromagnetics Research, Vol. 72, 215-240, 2007.
doi:10.2528/PIER07031602

12. Rahim, T., M. J. Mughal, M. Faryad, and Q. A. Naqvi, "Fields around the focal region of a paraboloidal reflector placed in isotropic chiral medium," Progress In Electromagnetics Research B, Vol. 15, 57-76, 2009.
doi:10.2528/PIERB09031002

13. Rahim, T., M. J. Mughal, M. Faryad, and Q. A. Naqvi, "Focal region field of a paraboloidal reflector coated with isotropic chiral medium," Progress In Electromagnetics Research, Vol. 94, 351-366, 2009.
doi:10.2528/PIER09032703

14. Qiu, C. W., N. Burokur, S. Zouhdi, and L. W. Li, "Chiral nihility effects on energy flow in chiral materials," J. Opt. Soc. Am. A, Vol. 25, No. 1, 55-63, 2008.
doi:10.1364/JOSAA.25.000055

15. Tuz, V. R. and C. W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.
doi:10.2528/PIER10030706

16. Dong, J. F., "Surface wave modes in chiral negative refraction grounded slab waveguides," Progress In Electromagnetics Research, Vol. 95, 153-166, 2009.
doi:10.2528/PIER09062604

17. Faryad, M. and Q. A. Naqvi, "High frequency expression for the field in the caustic region of cylindrical reflector placed in chiral medium," Progress In Electromagnetics Research, Vol. 76, 153-182, 2007.
doi:10.2528/PIER07070401

18. Faryad, M. and Q. A. Naqvi, "Cylindrical reflector in chiral medium supporting simultaneously positive phase velocity and negative phase velocity," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 563-572, 2008.
doi:10.1163/156939308784150344

19. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in three dimensional Cassegrain system," Progress In Electromagnetics Research, Vol. 72, 215-240, 2007.
doi:10.2528/PIER07031602


© Copyright 2010 EMW Publishing. All Rights Reserved