PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 23 > pp. 195-205

MICROWAVE IMAGING OF DIELECTRIC CYLINDERS USING LEVEL SET METHOD AND CONJUGATE GRADIENT ALGORITHM

By K. Grayaa

Full Article PDF (291 KB)

Abstract:
In this paper, a level set method for shape reconstruction problems is considered. By measuring the scattered field, we tried to retrieve the localisation and permittivity of buried objects. The forward problem is solved by the method of moments. For solving the inverse problem, we adopt an evolution approach. Therefore, we introduce a level set technique witch is flexible in handling complex shape changes. A conjugate gradient-based method is used in order to define iterative updates for the level set functions with the goal to minimize a given least squares data misfit functional. In particular, the proposed method is capable of creating new holes inside the design domain, which makes the final design independent of Experimental results demonstrate the feasibility and effectiveness of the proposed technique.

Citation:
K. Grayaa, "Microwave Imaging of Dielectric Cylinders Using Level Set Method and Conjugate Gradient Algorithm," Progress In Electromagnetics Research M, Vol. 23, 195-205, 2012.
doi:10.2528/PIERM11120201

References:
1. Fang, Q., P. M. Meaney, and K. D. Paulsen, "Viable three-dimensional medical microwave tomography: Theory and numerical experiments," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 2, 449-458, Feb. 2010.
doi:10.1109/TAP.2009.2037691

2. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Phys. Med. Biol., Vol. 37, No. 8, 4210-26, Aug. 2010.

3. Cao, C., L. Nie, C. Lou, and D. Xing, "The feasibility of using microwave-induced thermoacoustic tomography for detection and evaluation of renal calculi," Phys. Med. Biol., Vol. 55, No. 17, 5203-12, Sep. 2010.
doi:10.1088/0031-9155/55/17/020

4. Yedlin, M. J., A. Cresp, C. Pichot, I. Aliferis, J. Y. Dauvignac, and S. Gaffet, "Ultra-wideband microwave imaging of heterogeneities," Journal of Applied Geophysics, Vol. 68, No. 1, 17-25, May 2009.
doi:10.1016/j.jappgeo.2008.08.005

5. Remis, R. F. and P. M. Van den Berg, "On the equivalence of the Newton-Kantorovich and distorted Born methods," Inverse Problems, Vol. 16 2000, PII: S0266-5611(00)08356-8..

6. Joachimowicz, N., J. J. Mallorqui, J. C. Bolomey, and A. Broquetas, "Convergence and stability assessment of newton-kantorovich reconstruction algorithms for microwave tomography," IEEE Trans. on Medical Imaging, Vol. 17, No. 4, 562-570, Aug. 1998.
doi:10.1109/42.730401

7. Omrogbe, D. E. A. and A. A. Osagiede, "Preconditionning the modified conjugate gradient method," Global Journal of Mathematical Sciences, Vol. 8, No. 2, 2009.

8. Mhamdi, B., K. Grayaa, and T. Aguili, "Microwave imaging of dielectric cylinders from experimental scattering data based on the genetic algorithms, neural networks and a hybrid micro genetic algorithm with conjugate gradient," Int. J. of Electron. Commun. (AEU), Vol. 65, No. 2, 140-147, Feb. 2011.
doi:10.1016/j.aeue.2010.02.009

9. Mhamdi, B., K. Grayaa, and T. Aguili, "Hybrid of particle swarm optimization, simulated annealing and tabu search for the reconstruction of two-dimensional targets from laboratory-controlled data," Progress In Electromagnetics Research B, Vol. 28, 1-18, 2011.

10. Osher, S. and J. Sethian, "Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formula-tions," J. Comput. Phys., Vol. 79, No. 1, 12-49, 1988.
doi:10.1016/0021-9991(88)90002-2

11. Chunming, L., X. Chenyang, G. Changfeng, and D. F. Martin, "Distance regularized level set evolution and its application to image segmentation," IEEE Trans. on Image Processing, Vol. 19, No. 12, 3243-3253, Dec. 2010.
doi:10.1109/TIP.2010.2069690

12. Brodersen, A., K. Museth, S. Porumbescu, and B. Budge, "Geometric Texturing Using Level Sets," IEEE Trans. on Visualization and Computer Graphics, Vol. 14, No. 2, 277-288, Mar.-Apr. 2008.
doi:10.1109/TVCG.2007.70408

13. Young, S. K., K. B. Jin, and P. Il Han, "A level set method for shape optimization of electromagnetic systems," IEEE Trans. on Magnetics, Vol. 45, No. 3, 1466-1469, Mar. 2009.
doi:10.1109/TMAG.2009.2012681

14. Woten, D. A., M. R. Hajihashemi, A. M. Hassan, and M. El-Shenawee, "Experimental microwave validation of level set reconstruction algorithm," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 1, 230-233, Jan. 2010.
doi:10.1109/TAP.2009.2036186

15. Hu, J.-L., Z. Wu, H. McCann, L. E. Davis, and C.-G. Xie, "Quasi-three-dimensional method of moments for analyzing electromagnetic wave scattering in microwave tomography systems," IEEE Sensors Journal, Vol. 5, No. 2, 216-223, Apr. 2005.
doi:10.1109/JSEN.2004.842294

16. Belkebir, K. and M. Saillard, "Special section: Testing inversion algorithms against experimental data," Inverse Problems, Vol. 17, 1565-1571, 2001.
doi:10.1088/0266-5611/17/6/301

17. Osher, S. and R. Fedkiw, "Level set methods and dynamic implicit surface," Applied Mathematical Sciences, Vol. 53, Springer-Verlag, New York, 2003.


© Copyright 2010 EMW Publishing. All Rights Reserved