PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 27 > pp. 109-117

A METHOD BASED ON PARTICLE SWARM OPTIMIZATION TO RETRIEVE THE SHAPE OF RED BLOOD CELLS: A PRELIMINARY ASSESSMENT

By F. Caramanica

Full Article PDF (274 KB)

Abstract:
The particle swarm optimization (PSO) algorithm, a global optimization technique based on cooperative swarming strategy, has been used to solve inverse scattering problem for red flood cells (RBCs) and detect possible anomalies. The inverse scattering problem is recast as an iterative optimization one by definiing a suitable cost function.With this method is possible to estimate the morphological parameters of a red blood cell and to distinguish healthy RBCs from diseased ones. This work lays the basis for a new approach to make diagnosis. Preliminary numerical experiments show the potential effectiveness and the reliability of the proposed method as diagnostic tools.

Citation:
F. Caramanica, "A Method Based on Particle Swarm Optimization to Retrieve the Shape of Red Blood Cells: a Preliminary Assessment," Progress In Electromagnetics Research M, Vol. 27, 109-117, 2012.
doi:10.2528/PIERM12090201

References:
1. Ergul, O., A. Arslan-Ergul, and L. Gurel, "Computational study of scattering from healthy and diseased red blood cells," J. Biomed. Opt., Vol. 15, 045004, Aug. 2010.
doi:10.1117/1.3467493

2. Ergul, O., A. Arslan-Ergul, and L. Gurel, "Rigorous solutions of scattering problems involving red blood cells," EuCAP, 1-4, 2010.

3. Gilev, K. V., E. Eremina, M. A. Yurkin, and V. P. Maltsev, "Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells," Opt. Express, Vol. 18, 5681-5690, 2010.
doi:10.1364/OE.18.005681

4. Karlsson, A., J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. on Biomed. Eng., Vol. 52, 13-18, Jan. 2005.
doi:10.1109/TBME.2004.839634

5. Caorsi, S., A. Massa, M. Pastorino, and M. Donelli, "Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures," IEEE Trans. on Ant. and Propag., Vol. 52, 1386-1397, 2004.
doi:10.1109/TAP.2004.830254

6. Oliveri, G., F. Caramanica, and A. Massa, "Hybrid ADS-based techniques for radio astronomy array design," IEEE Trans. on Ant. and Propag。, Vol. 59, 1817-1827, Jun. 2011.
doi:10.1109/TAP.2011.2122228

7. Yurkin, M. A., "Discrete dipole simulations of light scattering by blood cells,", Ph.D. thesis, University of Amsterdam, 2007.

8. Yurkin, M. A., V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer, Vol. 106, 546-557, 2007.
doi:10.1016/j.jqsrt.2007.01.033

9., "ADDA | light scattering simulator using the discrete dipole approximation,", http://code.google.com/p/a-dda/, 2009.
doi:10.1016/j.jqsrt.2007.01.033

10. Kuchel, P. W. and E. D. Fackerell, "Parametric-equation representation of biconcave erythrocytes," Bulletin of Mathematical Biology, Vol. 61, 209-220, 1999.
doi:10.1006/bulm.1998.0064

11. Wolpert, D. H. and W. G. Macready, "No free lunch theorems for optimization," IEEE Trans. on Evolutionary Computation, Vol. 1, 67-82, 1997.
doi:10.1109/4235.585893

12. Yurkin, M. A., K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, "Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation," Appl. Opt., Vol. 44, 5249-5256, 2005.
doi:10.1364/AO.44.005249

13. Martini, A., M. Donelli, M. Franceschetti, and A. Massa, "Particle density retrieval in random media using a percolation model and a particle swarm optimizer," IEEE Ant. and Wireless Propag. Letters, Vol. 7, 213-216, 2008.
doi:10.1109/LAWP.2008.921140

14. Azaro, R., G. Boato, E. Zeni, M. Donelli, and A. Massa, "Design of Prefractal monopolar antenna for 3.4-3.6 GHz Wi-Max band portable devices," IEEE Ant. and Wireless Propag. Letters, Vol. 5, 116-119, 2006.
doi:10.1109/LAWP.2006.872427

15. Azaro, R., F. DeNatale, E. Zeni, and M. Donelli, "Optimized design of a multifunction multiband antenna for automotive rescue system," IEEE Trans. on Ant. and Propag.,, Vol. 54, 392-400, 2004.
doi:10.1109/TAP.2005.863387

16. Donelli, M., R. Azaro, L. Fimognari, and A. Massa, "A planar electronically reconfigurable Wi-Fi band antenna based on a parasitic microstrip structure," IEEE Ant. and Wireless Propag. Letters, Vol. 6, 623-626, 2007.
doi:10.1109/LAWP.2007.913274

17. Donelli, M., S. Caorsi, F. De Natale, D. Franceschini, and A. Massa, "A versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1533-1548, 2004.
doi:10.1163/1569393042954893


© Copyright 2010 EMW Publishing. All Rights Reserved