Vol. 27
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-11-15
A Fast Volume-Surface Integral Equation Solver for Scattering from High-Contrast Materials
By
Progress In Electromagnetics Research M, Vol. 27, 83-95, 2012
Abstract
This paper presents a generalized volume-surface integral equation (GVSIE) to solve electromagnetic (EM) scattering of high contrast inhomogeneous materials. Then the method of moments (MoM) is employed to solve the GVSIE. The GVSIE technique where the domain is represented by a corresponding uniform background medium coupled with a variation, together representing the overall inhomogeneity, is solve by the method of moments (MoM) using Schaubert-Wilton-Glisson (SWG) and Rao-Wilton-Glisson (RWG) basis functions. The adaptive cross approximation (ACA) algorithm combined with the equivalent dipole-moment (EDM) method are extended to reduce memory and CPU time. A highly effective preconditioning strategy is presented to solve the system of equations without any increase in the computational complexity. Experiments on several problems representative of scattering simulations are given to illustrate the potential of the above proposed techniques for solving EM scattering involving high contrast applications.
Citation
Xiaoqiao Deng, Chang Qing Gu, Bingzheng Xu, and Zhuo Li, "A Fast Volume-Surface Integral Equation Solver for Scattering from High-Contrast Materials," Progress In Electromagnetics Research M, Vol. 27, 83-95, 2012.
doi:10.2528/PIERM12092902
References

1. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propag。, Vol. 32, 77-85, 1984.
doi:10.1109/TAP.1984.1143193

2. Rao, S. M., D. R. Wilton, A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

3. Poggio, A. J. and E. K. Miller, Integral Equation Solution of Three Dimensional Scattering Problems, Chapter 4, Elmsford, Permagon, NY, 1973.

4. Chang, Y. and R. F. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propag., Vol. 25, 789-795, 1977.
doi:10.1109/TAP.1977.1141685

5. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, 709-718, 1977.
doi:10.1029/RS012i005p00709

6. Usner, B. C., K. Sertel, M. A. Carr, and J. L. Volakis, "Generalized volume-surface integral equation for modeling inhomogeneities within high contrast composite structures," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 68-75, 2006.
doi:10.1109/TAP.2005.861579

7. Yuan, J. D., C. Q. Gu, and G. D. Han, "Efficient generation of method of moments matrices using equivalent dipole-moment method," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 716-719, 2009.
doi:10.1109/LAWP.2009.2024337

8. Deng, X. Q., C. Q. Gu, and Y. G. Zhou, "Electromagnetic scattering by arbitrary shaped three-dimensional conducting objects covered with electromagnetic anisotropic materials," ACES Journal, Vol. 26, No. 11, 886-892, 2011.

9. Gurel, L., T. Malas, and L. Gurel, "Solutions of large scale electromagnetics problems using an iterative inner-outer scheme with ordinary and approximate multilevel fast multipole algorithms," Progress In Electromagnetics Research, Vol. 106, 203-223, 2010.

10. Wang, C. F., L. W. Li, P. S. Kooi, and M. S. Leong, "Efficient capacitance computation for three dimensional structures based on adaptive integral method," Progress In Electromagnetics Research, Vol. 30, 33-46, 2011.

11. Chen, X. L., Z. Y. Niu, Z. Li, and C. Q. Gu, "A hybrid fast dipole method and adaptive modified characteristic basis function method for electromagnetic scattering from perfect electric conduction targets," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1940-1952, 2011.
doi:10.1163/156939311798072171

12. Chen, X. L., Z. Li, Z. Y. Niu, and C. Q. Gu, "Analysis of electromagnetic scattering from PEC targets using improved fast dipole method," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2254-2263, 2011.
doi:10.1163/156939311798147051

13. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

14. Guo, J. L., J. Y. Li, and Q. Z. Liu, "Electromagnetic analysis of coupled conducting and dielectric targets using MoM with a pre-conditioner," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 9, 1223-1236, 2005.
doi:10.1163/156939305775526007

15. Li, X. M., C. M. Tong, S. H. Fu, and J. J. Li, "A study on EM scattering characteristics of radome," Modern Radar, Vol. 31, No. 10, 95-97, 2009.