PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 27 > pp. 83-95

A FAST VOLUME-SURFACE INTEGRAL EQUATION SOLVER FOR SCATTERING FROM HIGH-CONTRAST MATERIALS

By X. Deng, C. Q. Gu, B. Xu, and Z. Li

Full Article PDF (275 KB)

Abstract:
This paper presents a generalized volume-surface integral equation (GVSIE) to solve electromagnetic (EM) scattering of high contrast inhomogeneous materials. Then the method of moments (MoM) is employed to solve the GVSIE. The GVSIE technique where the domain is represented by a corresponding uniform background medium coupled with a variation, together representing the overall inhomogeneity, is solve by the method of moments (MoM) using Schaubert-Wilton-Glisson (SWG) and Rao-Wilton-Glisson (RWG) basis functions. The adaptive cross approximation (ACA) algorithm combined with the equivalent dipole-moment (EDM) method are extended to reduce memory and CPU time. A highly effective preconditioning strategy is presented to solve the system of equations without any increase in the computational complexity. Experiments on several problems representative of scattering simulations are given to illustrate the potential of the above proposed techniques for solving EM scattering involving high contrast applications.

Citation:
X. Deng, C. Q. Gu, B. Xu, and Z. Li, "A Fast Volume-Surface Integral Equation Solver for Scattering from High-Contrast Materials," Progress In Electromagnetics Research M, Vol. 27, 83-95, 2012.
doi:10.2528/PIERM12092902

References:
1. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propag。, Vol. 32, 77-85, 1984.
doi:10.1109/TAP.1984.1143193

2. Rao, S. M., D. R. Wilton, A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

3. Poggio, A. J. and E. K. Miller, Integral Equation Solution of Three Dimensional Scattering Problems, Chapter 4, Elmsford, Permagon, NY, 1973.

4. Chang, Y. and R. F. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propag., Vol. 25, 789-795, 1977.
doi:10.1109/TAP.1977.1141685

5. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, 709-718, 1977.
doi:10.1029/RS012i005p00709

6. Usner, B. C., K. Sertel, M. A. Carr, and J. L. Volakis, "Generalized volume-surface integral equation for modeling inhomogeneities within high contrast composite structures," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 68-75, 2006.
doi:10.1109/TAP.2005.861579

7. Yuan, J. D., C. Q. Gu, and G. D. Han, "Efficient generation of method of moments matrices using equivalent dipole-moment method," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 716-719, 2009.
doi:10.1109/LAWP.2009.2024337

8. Deng, X. Q., C. Q. Gu, and Y. G. Zhou, "Electromagnetic scattering by arbitrary shaped three-dimensional conducting objects covered with electromagnetic anisotropic materials," ACES Journal, Vol. 26, No. 11, 886-892, 2011.

9. Gurel, L., T. Malas, and L. Gurel, "Solutions of large scale electromagnetics problems using an iterative inner-outer scheme with ordinary and approximate multilevel fast multipole algorithms," Progress In Electromagnetics Research, Vol. 106, 203-223, 2010.

10. Wang, C. F., L. W. Li, P. S. Kooi, and M. S. Leong, "Efficient capacitance computation for three dimensional structures based on adaptive integral method," Progress In Electromagnetics Research, Vol. 30, 33-46, 2011.

11. Chen, X. L., Z. Y. Niu, Z. Li, and C. Q. Gu, "A hybrid fast dipole method and adaptive modified characteristic basis function method for electromagnetic scattering from perfect electric conduction targets," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1940-1952, 2011.
doi:10.1163/156939311798072171

12. Chen, X. L., Z. Li, Z. Y. Niu, and C. Q. Gu, "Analysis of electromagnetic scattering from PEC targets using improved fast dipole method," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2254-2263, 2011.
doi:10.1163/156939311798147051

13. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

14. Guo, J. L., J. Y. Li, and Q. Z. Liu, "Electromagnetic analysis of coupled conducting and dielectric targets using MoM with a pre-conditioner," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 9, 1223-1236, 2005.
doi:10.1163/156939305775526007

15. Li, X. M., C. M. Tong, S. H. Fu, and J. J. Li, "A study on EM scattering characteristics of radome," Modern Radar, Vol. 31, No. 10, 95-97, 2009.


© Copyright 2010 EMW Publishing. All Rights Reserved