Vol. 29
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-03-12
Perforated Nanoantenna Reflectarray
By
Progress In Electromagnetics Research M, Vol. 29, 253-265, 2013
Abstract
This paper presents a design of perforated nanoantenna reflectarray. The use of metallic nanostructures made of Silver and/or Gold at appropriate wavelength cause fascinating unusual electromagnetic effects. Reflectarray consists of an array of unit cell made from Silver is investigated. The effect of the number of perforated holes in the unit cell configurations is investigated for proper reflection coefficient phase compensation. A linearly polarized pyramidal nano-horn is used to feed the perforated nanoantenna reflectarray. The radiation characteristics of 9 × 9 perforated nanoantenna reflectarray are illustrated. A high gain of 20.5 dB is obtained at the designed frequency of 735 THz. A comparison between solid Silver sheet with no perforation holes and the proposed perforated reflectarray is explained.
Citation
Saber Zainud-Deen, Hend Abd El-Azem Malhat, Shaymaa Gaber, and Kamal Awadalla, "Perforated Nanoantenna Reflectarray," Progress In Electromagnetics Research M, Vol. 29, 253-265, 2013.
doi:10.2528/PIERM13011105
References

1. Huang, J. and J. A. Encinar, Reflectarray Antennas, John Wiley and Sons, Inc., Hoboken, NJ, USA, 2007.

2. Hansen, R. C., Phased Array Antennas, John Wiley & Sons, 1998.

3. Dzulkipli, I., M. H. Jamaluddin, R. Ngah, M. R. B. Kamarudin, N. Seman, and M. K. Abd Rahim, "Mutual coupling analysis using FDTD for dielectric resonator antenna reflectarray radiation prediction," Progress In Electromagnetics Research B, Vol. 41, 121-136, 2012.

4. Jamaluddin, M. H., R. Sauleau, X. Castel, R. Benzerga, L. Le Coq, R. Gillard, and T. Koleck, "Design, fabrication and characterization of a dielectric resonator antenna reflectarray in Ka-band," Progress In Electromagnetics Research B, Vol. 25, 261-275, 2010.

5. Zainud-Deen, S. H., E. Abd, A. A. Mitkees, and A. A. Kishk, "Design of dielectric resonator reflectarray using full-wave analysis," National Radio Science Conference (NRSC 2009), 1-9, Egypt, 2009.

6. Cadoret, D., L. Marnat, R. Loison, R. Gillard, H. Legay, and B. Salome, "A dual linear polarized printed reflectarray using slot oaded patch elements," The 2nd European Conference Antenna and Propagation (EUCAP 2007), 1-5, 2007.

7. Radi, Y., S. Nikmehr, and A. Pourziad, "A novel bandwidth enhancement technique for X-band RF MEMS actuated reconfigurable reflectarray," Progress In Electromagnetics Research, Vol. 111, 179-196, 2011.

8. Rengarajan, S. R., "Reflectarrays of rectangular microstrip patches for dual-polarization dual-beam radar interferometers," Progress In Electromagnetics Research, Vol. 133, 1-15, 2013.

9. Novotny, L. and N. van Hulst, "Antennas for light," Nature Photonics, Vol. 5, 83-90, February 2011.

10. Novotny, L. and B. Hecht, Principles of Nano-optics, Cambridge University Press, New York, USA, 2006.

11. Miroshnichenko, A. E., I. S. Maksymov, R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, "An arrayed nanoantenna for broadband light emission and detection," Physica Status Solidi (RRL)-rapid Research Letters, Vol. 5, No. 9, 347-349, September 2011.

12. Stockman, M. I., "Nanofocusing of optical energy in tapered plasmonic waveguides," Physical Review Letters, Vol. 93, No. 13, 7404-7408, 2004.

13. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Material, Vol. 9, 205-213, September 2010.

14. Liu, N., M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, "Nanoantenna-enhanced gas sensing in a single tailored nanofocus," Nature Material, Vol. 10, 631-636, May 2011.

15. De Angelis, F., G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. di Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nature Nanotechnology, Vol. 5, 67-72, November 2010.

16. Maksymov, I. S., M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, "Metal-coated nanocylinder cavity for broadband nonclassical light emission," Physical Review Letters, Vol. 105, No. 18, 502-506, 2010.

17. Al'u, A. and N. Engheta, "Wireless at the nanoscale: Optical interconnects using matched nanoantennas," Physical Review Letters, Vol. 104, No. 21, 3902-3906, 2010.

18. Ahmadi, A., "Metamaterials demonstrating focusing and radiation characteristics applications,", Ph.D. Thesis, The Field of Electrical Engineering, Northeastern University, Boston, Massachusetts, August 2010.

19. Chair, R., A. A. Kishk, and K. F. Lee, "Experimental investigation for wideband perforated dielectric resonator antenna," Electronic Letters, Vol. 42, No. 3, 137-139, February 2006.

20. Cooke, S. J., R. Shtokhamer, A. A. Mondelli, and B. Levush, "A finite integration method for conformal, structured-grid, electromagnetic simulation," Journal of Computational Physics, Vol. 215, 321-347, 2006.

21. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science Magazine, Vol. 311, No. 5758, 189-193, January 2006.

22. Zhang, Y. and A. A. Kishk, "Analysis of dielectric resonator antenna arrays with supporting perforated rods," 2nd European Conf. on Antennas and Propag., (EuCAP 2007), 1-5, 2007.

23. Ramaccia, D., F. Bilotti, A. Toscano, and A. Massaro, "Efficient and wideband horn nanoantenna," Optics Letters, Vol. 36, No. 10, 1743-1745, May 2011.

24. Ramaccia, D., F. Bilotti, A. Toscano, R. Cingolani, and A. Massaro, "Electrical and radiation properties of a horn nano-antenna at near infrared frequencies," Proc. of IEEE (AP-S/URSI), 2407-2410, 2011.