Vol. 31

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-05-19

A Loop-Type End-Launcher for Carbon Fiber Reinforced Polymer Waveguides

By Alexe Bojovschi, Derek Gray, and Kamran Ghorbani
Progress In Electromagnetics Research M, Vol. 31, 13-27, 2013
doi:10.2528/PIERM13041601

Abstract

The analysis of an end-launcher type transition from coaxial to WR90 waveguides is presented. This transition is tuned to have the highest performance at the radar frequency of 9.375 GHz. The characteristics of the transducer are investigated comparatively in 30 cm aluminum and carbon fiber reinforced polymer waveguides. The advantage of the proposed feed is that it does not require grounding to the broad wall of the waveguide compared to the traditional end-launcher loop feeds. This departure from the current loop feeds makes the proposed feed suitable for carbon fiber reinforced polymer waveguides where a disruption in the broad wall would be undesirable.

Citation


Alexe Bojovschi, Derek Gray, and Kamran Ghorbani, "A Loop-Type End-Launcher for Carbon Fiber Reinforced Polymer Waveguides," Progress In Electromagnetics Research M, Vol. 31, 13-27, 2013.
doi:10.2528/PIERM13041601
http://www.jpier.org/PIERM/pier.php?paper=13041601

References


    1. Chan, K. K., R. Martin, and K. Chadwick, "A broadband end launcher coaxial-to-waveguide transition for waveguide phased arrays," Proceedings of IEEE, 1390-1393, 1998.

    2. Deshpande, M. D., B. N. Das, and G. S. Sanyal, "Analysis of an end launcher for an X-band rectangular waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, No. 8, 731-735, Aug. 1979.
    doi:10.1109/TMTT.1979.1129715

    3. Saad, S. M., "A more accurate analysis and design of coaxial-to-rectangular waveguide end launcher," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 2, 129-134, Feb. 1990.
    doi:10.1109/22.46421

    4. Levy, R. and L. W. Hendrick, "Analysis and synthesis of in-line coaxial-to-waveguide adapters," Proceedings of IEEE Microwave Symposium, 809-811, Seattle, USA, Jun. 2002.

    5. Dix, J. C., "Design of waveguide/coaxial transition for the band 2.5-4.1 Gc/s," Proc. of the Institute of Electrical Engineers, Vol. 110, No. 2, 253-255, Feb. 1963.
    doi:10.1049/piee.1963.0036

    6. Wheeler, G. J., "Broad band waveguide to coaxial transitions,", IRE Convention Record Part 1, 182-185, 1957.

    7. Tang, R. and N. S. Wong, "Multimode phased array element for wide scan angle impedance matching," Proceedings of IEEE, 1951-1959, 1968.
    doi:10.1109/PROC.1968.6770

    8. Das, B. N. and G. S. Sanyal, "Coaxial to waveguide transition (end launcher type)," Proc. of the Institute of Electrical Engineers, Vol. 110, 253-255, London, 1963.

    9. Lockyer, A. J., K. H. Alt, D. P. Coughlin, M. D. Durham, J. N. Kudva, A. C. Goetz, and J. Tuss, "Design and development of a conformal load-bearing smart skin antenna: Overview of the AFRL smart skin structures technology demonstration (S3TD)," Proc. of SPIE, Vol. 3674, 4010-4024, 1999.

    10. Callus, P. J., "Novel concepts for conformal load-bearing antenna structure,", Report No. DSTO-TR-2096, Defence Science and Technology Organisation, Australia, Feb. 2008.

    11. Callus, P. J., J. C. D. de LaHarpe, J. M. Tuss, W. G. Baron, and D. G. Kuhl, "Slotted waveguide antenna stiffened structure,", United States Patent No. 8149177, Apr. 3, 2012.

    12. Nicholson, K. J. and P. J. Callus, "Antenna patterns from single slots in carbon fibre reinforced plastic waveguides,", Report No. DSTO-TR-2389, Defence Science and Technology Organisation, Australia, Feb. 2010.

    13. Stevenson, A. F., "Theory of slots in rectangular waveguides," J. Appl. Phys., Vol. 19, 24-38, 1948.
    doi:10.1063/1.1697868

    14. Golfman, Y., Hybrid Anisotropic Materials for Structural Aviation Parts, Taylor & Francis Group, 2011.

    15. Niu, M. C. Y., Composite Airframe Structures, 2nd Ed., Conmilit Press Ltd., Hong Kong, 1996.

    16. Bojovschi, A., K. J. Nicholson, A. Galehdar, P. J. Callus, and K. Ghorbani, "The role of fibre orientation on the electromagnetic performance of waveguides manufactured from carbon fibre reinforced plastic," Progress In Electromagnetics Research B, Vol. 39, 267-280, 2012.
    doi:10.2528/PIERB12011110

    17. Gray, D., K. J. Nicholson, K. Ghorbani, and P. J. Callus, "Carbon fibre reinforced plastic slotted waveguide antenna," Proc. Asia Pacific Microwave Conf., 307-310, 2010.

    18. Galehdar, A., W. S. T. Rowe, K. Ghorbani, P. J. Callus, S. John, and C. H. Wang, "A frequency selective polarizer using carbon fibre reinforced polymer composite," Progress In Electromagnetics Research C, Vol. 25, 107-118, 2012.
    doi:10.2528/PIERC11092610

    19. Galehdar, A., W. S. T. Rowe, K. Ghorbani, P. J. Callus, S. John, and C. H.Wang, "The effect of ply orientation on the performance of antennas in or on carbon fibre composites," Progress In Electromagnetics Research, Vol. 116, 123-136, 2011.

    20. Mehdipour, A., A.-R. Sebak, C. W. Trueman, I. D. Rosca, and S. V. Hoa, "Performance of microstrip patch antenna on a reinforced carbon fiber composite ground plane," Microwave and Optical Technology Letters, Vol. 53, No. 6, 1328-1331, 2011.
    doi:10.1002/mop.25976

    21. Galehdar, A., P. J. Callus, W. S. T. Rowe, C. H. Wang, S. John, and K. Ghorbani, "Capacitively fed cavity-backed slot antenna in carbon-fiber composite panels," IEEE Antenna and Wireless Propagation Letters, Vol. 11, 1028-1031, 2012.
    doi:10.1109/LAWP.2012.2214197

    22. Bojovschi, A., W. R. Rowe, and K. L. Wong, "Electromagnetic field intensity generated by partial discharge in high voltage insulating materials," Progress In Electromagnetics Research, Vol. 104, 167-182, 2010.
    doi:10.2528/PIER10010803

    23. Megali, G., D. Pellicano, M. Cacciola, S. Calcagno, M. Versaci, and F. C. Morabito, "EC modeling and enhancement signals in CFRP inspection," Progress In Electromagnetics Research M, Vol. 14, 45-60, 2010.
    doi:10.2528/PIERM10072705

    24. Sanjuan, J., A. Preston, D. Korytov, A. Spector, A. Freise, G. Dixon, J. Livas, and G. Mueller, "Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope," Review of Scientific Instruments, Vol. 82, 124501-1-124501-11, 2011.

    25. Ansoft HFSS 12.1.2, Online Resource, , 2010.

    26. Silvester, P. P. and G. Pelosi, Finite Elements for Wave Electromagnetics, IEEE Press, New York, 1996.

    27. Davidson, D. B., Computational Electromagnetics for RF for Microwave Engineering, Cambridge University Press, Cambridge, 2005.
    doi:10.1017/CBO9780511611575

    28. Harington, R. F., Time Harmonic Electromagnetic Fields, Section .11, McGraw-Hill, New York, 1961.

    29., , Hexcel Corporation, HexTow IM7 Carbon Fibre Product Data Sheet.

    30. Callus, P. J. and K. J. Nicholson, "Standard operating procedure --- Manufacture of carbon fibre reinforced plastic waveguides and slotted waveguide antennas,", Report No. DSTO-TN-0937, Version 1.0, Defence Science and Technology Organisation, Australia, Jun. 2011.

    31. Brewer, M. K. and A. V. Raisanen, "Dual-harmonic noncontacting millimeter waveguide backshorts: Theory, design, and test," IEEE Transactions on Microwave Theory and Techniques,, Vol. 30, 708-714, 1982.
    doi:10.1109/TMTT.1982.1131125

    32. McGrath, W. R., T. M. Weller, and L. P. B. Katehi, "Novel noncontacting waveguide backshort for submilimeter wave frequencies," Int. J. of Infrared and Millimeter Waves, Vol. 16, No. 1, 237-256, 1995.
    doi:10.1007/BF02085860

    33. Wiltron 360, "Vector network analyser operation manual,", Wiltron, Morgan Hill, CA, 1994.