Vol. 31
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-05-19
A Loop-Type End-Launcher for Carbon Fiber Reinforced Polymer Waveguides
By
Progress In Electromagnetics Research M, Vol. 31, 13-27, 2013
Abstract
The analysis of an end-launcher type transition from coaxial to WR90 waveguides is presented. This transition is tuned to have the highest performance at the radar frequency of 9.375 GHz. The characteristics of the transducer are investigated comparatively in 30 cm aluminum and carbon fiber reinforced polymer waveguides. The advantage of the proposed feed is that it does not require grounding to the broad wall of the waveguide compared to the traditional end-launcher loop feeds. This departure from the current loop feeds makes the proposed feed suitable for carbon fiber reinforced polymer waveguides where a disruption in the broad wall would be undesirable.
Citation
Alexe Bojovschi, Derek Gray, and Kamran Ghorbani, "A Loop-Type End-Launcher for Carbon Fiber Reinforced Polymer Waveguides," Progress In Electromagnetics Research M, Vol. 31, 13-27, 2013.
doi:10.2528/PIERM13041601
References

1. Chan, K. K., R. Martin, and K. Chadwick, "A broadband end launcher coaxial-to-waveguide transition for waveguide phased arrays," Proceedings of IEEE, 1390-1393, 1998.

2. Deshpande, M. D., B. N. Das, and G. S. Sanyal, "Analysis of an end launcher for an X-band rectangular waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, No. 8, 731-735, Aug. 1979.
doi:10.1109/TMTT.1979.1129715

3. Saad, S. M., "A more accurate analysis and design of coaxial-to-rectangular waveguide end launcher," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 2, 129-134, Feb. 1990.
doi:10.1109/22.46421

4. Levy, R. and L. W. Hendrick, "Analysis and synthesis of in-line coaxial-to-waveguide adapters," Proceedings of IEEE Microwave Symposium, 809-811, Seattle, USA, Jun. 2002.

5. Dix, J. C., "Design of waveguide/coaxial transition for the band 2.5-4.1 Gc/s," Proc. of the Institute of Electrical Engineers, Vol. 110, No. 2, 253-255, Feb. 1963.
doi:10.1049/piee.1963.0036

6. Wheeler, G. J., "Broad band waveguide to coaxial transitions,", IRE Convention Record Part 1, 182-185, 1957.

7. Tang, R. and N. S. Wong, "Multimode phased array element for wide scan angle impedance matching," Proceedings of IEEE, 1951-1959, 1968.
doi:10.1109/PROC.1968.6770

8. Das, B. N. and G. S. Sanyal, "Coaxial to waveguide transition (end launcher type)," Proc. of the Institute of Electrical Engineers, Vol. 110, 253-255, London, 1963.

9. Lockyer, A. J., K. H. Alt, D. P. Coughlin, M. D. Durham, J. N. Kudva, A. C. Goetz, and J. Tuss, "Design and development of a conformal load-bearing smart skin antenna: Overview of the AFRL smart skin structures technology demonstration (S3TD)," Proc. of SPIE, Vol. 3674, 4010-4024, 1999.

10. Callus, P. J., "Novel concepts for conformal load-bearing antenna structure,", Report No. DSTO-TR-2096, Defence Science and Technology Organisation, Australia, Feb. 2008.

11. Callus, P. J., J. C. D. de LaHarpe, J. M. Tuss, W. G. Baron, and D. G. Kuhl, "Slotted waveguide antenna stiffened structure,", United States Patent No. 8149177, Apr. 3, 2012.

12. Nicholson, K. J. and P. J. Callus, "Antenna patterns from single slots in carbon fibre reinforced plastic waveguides,", Report No. DSTO-TR-2389, Defence Science and Technology Organisation, Australia, Feb. 2010.

13. Stevenson, A. F., "Theory of slots in rectangular waveguides," J. Appl. Phys., Vol. 19, 24-38, 1948.
doi:10.1063/1.1697868

14. Golfman, Y., Hybrid Anisotropic Materials for Structural Aviation Parts, Taylor & Francis Group, 2011.

15. Niu, M. C. Y., Composite Airframe Structures, 2nd Ed., Conmilit Press Ltd., Hong Kong, 1996.

16. Bojovschi, A., K. J. Nicholson, A. Galehdar, P. J. Callus, and K. Ghorbani, "The role of fibre orientation on the electromagnetic performance of waveguides manufactured from carbon fibre reinforced plastic," Progress In Electromagnetics Research B, Vol. 39, 267-280, 2012.
doi:10.2528/PIERB12011110

17. Gray, D., K. J. Nicholson, K. Ghorbani, and P. J. Callus, "Carbon fibre reinforced plastic slotted waveguide antenna," Proc. Asia Pacific Microwave Conf., 307-310, 2010.

18. Galehdar, A., W. S. T. Rowe, K. Ghorbani, P. J. Callus, S. John, and C. H. Wang, "A frequency selective polarizer using carbon fibre reinforced polymer composite," Progress In Electromagnetics Research C, Vol. 25, 107-118, 2012.
doi:10.2528/PIERC11092610

19. Galehdar, A., W. S. T. Rowe, K. Ghorbani, P. J. Callus, S. John, and C. H.Wang, "The effect of ply orientation on the performance of antennas in or on carbon fibre composites," Progress In Electromagnetics Research, Vol. 116, 123-136, 2011.

20. Mehdipour, A., A.-R. Sebak, C. W. Trueman, I. D. Rosca, and S. V. Hoa, "Performance of microstrip patch antenna on a reinforced carbon fiber composite ground plane," Microwave and Optical Technology Letters, Vol. 53, No. 6, 1328-1331, 2011.
doi:10.1002/mop.25976

21. Galehdar, A., P. J. Callus, W. S. T. Rowe, C. H. Wang, S. John, and K. Ghorbani, "Capacitively fed cavity-backed slot antenna in carbon-fiber composite panels," IEEE Antenna and Wireless Propagation Letters, Vol. 11, 1028-1031, 2012.
doi:10.1109/LAWP.2012.2214197

22. Bojovschi, A., W. R. Rowe, and K. L. Wong, "Electromagnetic field intensity generated by partial discharge in high voltage insulating materials," Progress In Electromagnetics Research, Vol. 104, 167-182, 2010.
doi:10.2528/PIER10010803

23. Megali, G., D. Pellicano, M. Cacciola, S. Calcagno, M. Versaci, and F. C. Morabito, "EC modeling and enhancement signals in CFRP inspection," Progress In Electromagnetics Research M, Vol. 14, 45-60, 2010.
doi:10.2528/PIERM10072705

24. Sanjuan, J., A. Preston, D. Korytov, A. Spector, A. Freise, G. Dixon, J. Livas, and G. Mueller, "Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope," Review of Scientific Instruments, Vol. 82, 124501-1-124501-11, 2011.

25. Ansoft HFSS 12.1.2, Online Resource, , 2010.

26. Silvester, P. P. and G. Pelosi, Finite Elements for Wave Electromagnetics, IEEE Press, New York, 1996.

27. Davidson, D. B., Computational Electromagnetics for RF for Microwave Engineering, Cambridge University Press, Cambridge, 2005.
doi:10.1017/CBO9780511611575

28. Harington, R. F., Time Harmonic Electromagnetic Fields, Section .11, McGraw-Hill, New York, 1961.

29., Hexcel Corporation, HexTow IM7 Carbon Fibre Product Data Sheet.

30. Callus, P. J. and K. J. Nicholson, "Standard operating procedure --- Manufacture of carbon fibre reinforced plastic waveguides and slotted waveguide antennas,", Report No. DSTO-TN-0937, Version 1.0, Defence Science and Technology Organisation, Australia, Jun. 2011.

31. Brewer, M. K. and A. V. Raisanen, "Dual-harmonic noncontacting millimeter waveguide backshorts: Theory, design, and test," IEEE Transactions on Microwave Theory and Techniques,, Vol. 30, 708-714, 1982.
doi:10.1109/TMTT.1982.1131125

32. McGrath, W. R., T. M. Weller, and L. P. B. Katehi, "Novel noncontacting waveguide backshort for submilimeter wave frequencies," Int. J. of Infrared and Millimeter Waves, Vol. 16, No. 1, 237-256, 1995.
doi:10.1007/BF02085860

33. Wiltron 360 "Vector network analyser operation manual,", Wiltron, Morgan Hill, CA, 1994.