Vol. 31

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-06-27

Simplified Modeling and Measurement Procedures for Electromagnetic Launchers Performances Evaluation

By Hocine Menana
Progress In Electromagnetics Research M, Vol. 31, 189-198, 2013
doi:10.2528/PIERM13050510

Abstract

In this work, Simplified modeling and measurement procedures for capacitive driven electromagnetic launchers using magnetic armatures are presented. The modeling strategy is based on a successive solving of the circuit equation coupled to a 2D finite element (FEM) magnetostatic computation and the mechanical equation of the armature motion. This leads to a considerable time and memory space saving compared to a time domain magnetodynamic problem computation. The armature velocity is determined through the analysis of the time variation of the induced voltage, due to the armature remanent magnetization, in an auxiliary coil placed at the launcher extremity. The modelling and measurement strategies are implemented and tested on a laboratory developed coil-gun prototype. Modelling and measurement results are provided.

Citation


Hocine Menana, "Simplified Modeling and Measurement Procedures for Electromagnetic Launchers Performances Evaluation," Progress In Electromagnetics Research M, Vol. 31, 189-198, 2013.
doi:10.2528/PIERM13050510
http://www.jpier.org/PIERM/pier.php?paper=13050510

References


    1. Vottis, P. M., M. Cipollo, E. Kathe, Z. Zabar, E. Levi, and L. Birenbaum, "Use of electromagnetic coil launcher to increase muzzle velocity of conventional cannons," IEEE Trans. Magn., Vol. 33, No. 1, 190-194, 1997.
    doi:10.1109/20.559943

    2. Hasirci, U., A. Balikci, Z. Zabar, and L. Birenbaum, "Concerning the design of a novel electromagnetic launcher for earth-to-orbit micro- and nanosatellite systems," IEEE Trans. on Plasma Science, Vol. 39, No. 1, 498-503, 2011.
    doi:10.1109/TPS.2010.2076289

    3. Li, L., M. Ma, B. Kou, and Q. Chen, "Analysis and optimization of slotless electromagnetic linear launcher for space use," IEEE Trans. on Plasma Science, Vol. 39, No. 1, 127-132, 2011.
    doi:10.1109/TPS.2010.2049590

    4. Doyle, M. R., D. J. Samuel, T. Conway, and R. R. Klimowski, "Electromagnetic aircraft launch system --- EMALS," IEEE Trans. Magn., Vol. 31, No. 1, 528-533, 1995.
    doi:10.1109/20.364638

    5. Balikci, A., Z. Zabar, L. Birenbaum, and D. Czarkowski, "On the design of coilguns for super-velocity launchers," IEEE Trans. Magn., Vol. 43, No. 1, 107-110, 2007.
    doi:10.1109/TMAG.2006.887651

    6. Zaouia, M., H. Mohellebi, and M. Abdellah, "Electric-magneticmechanical coupled model for analyzing dynamic characteristics with feeding effects of linear in-duction launcher," IASME Transactions, Vol. 1, No. 2, 235-240, 2004.

    7. Zou, B., Y. Cao, J. Wu, H. Wang, and X. Chen, "Magnetic-structural coupling analysis of armature in induction coilgun," IEEE Trans. on Plasma Science, Vol. 39, No. 1, 65-70, 2011.
    doi:10.1109/TPS.2010.2045661

    8. Manna, M. S., S. Marwaha, and A. Marwaha, "Performances optimization of linear induction motor by eddy current and flux density distribution analysis," Journal of Engineering Science and Technology, Vol. 6, No. 6, 769-776, 2011.

    9. Liu, S., J. Ruan, and Y. Zhang, "Application of FE-BECM in field analysis of induction coil gun," IEEE Trans. on Plasma Science, Vol. 39, No. 1, 94-99, 2011.
    doi:10.1109/TPS.2010.2051164

    10. Zhang, Y., Y. Wang, and J. Ruan, "Capacitor-driven coil-gun scaling relationships," IEEE Trans. on Plasma Science, Vol. 39, No. 1, 220-224, 2011.
    doi:10.1109/TPS.2010.2052266

    11. Liu, S., J. Ruan, Y. Peng, Y. Zhang, and Y. Zhang, "Improvement of current filament method and its application in performance analysis of induction coil gun," IEEE Trans. on Plasma Science, Vol. 39, No. 1, 382-389, 2011.
    doi:10.1109/TPS.2010.2047276

    12. Lei, B., X. Guan, Z. Li, and B. Zhi, "Performance analysis of single inductive coil driver," IEEE Trans. on Plasma Science, Vol. 39, No. 1, 53-58, 2011.
    doi:10.1109/TPS.2010.2052635

    13. Sabariego, R. V., P. Dular, and J. Gyselinck, "Time-domain homogenization of windings in three-dimensional finite element," Proceedings of COMPUMAG'2007, 1107-1108, Aachen, Germany, 2007.

    14. Hertz, B. P. and P. R. Ukrainetz, "Auto-aerodynamic drag-force analysis," Experimental Mechanics, Vol. 7, No. 3, 19A-22A, 1967.
    doi:10.1007/BF02326382

    15. Lubin, T., K. Berger, and A. Rezzoug, "Inductance and force calculation for axisymetric coil systems including an iron core of finite length," Progress In Electromagnetics Research B, Vol. 41, 377-396, 2012.