PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 36 > pp. 139-147

FAST WIDEBAND ANALYSIS OF ANTENNAS USING IE-PO HYBRID METHOD AND THE BEST UNIFORM APPROXIMATION

By W.-F. Chen, S.-X. Gong, B. Zhao, and P.-F. Zhang

Full Article PDF (414 KB)

Abstract:
An efficient wide-band analysis that combines modified integral equation-physical optics (IE-PO) hybrid formulation with the best uniform approximation is proposed for antennas around an electrically large platform in this paper. The modified single-level Fast Fourier Transform (FFT) algorithm which is based on the subdomain FFT acceleration is employed by interpolating the Green's function and introducing the concept of the empty groups. Furthermore, the correction of the near-interaction is avoided. On the other hand, the best uniform approximation technique is applied to analyze wide-band properties of antennas. Due to the above modifications, the hybrid method needs fewer unknowns and memory requirements than the conventional one.

Citation:
W.-F. Chen, S.-X. Gong, B. Zhao, and P.-F. Zhang, "Fast Wideband Analysis of Antennas Using Ie-PO Hybrid Method and the Best Uniform Approximation," Progress In Electromagnetics Research M, Vol. 36, 139-147, 2014.
doi:10.2528/PIERM14033109

References:
1. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 43, No. 2, 162-169, 1995.
doi:10.1109/8.366378

2. Obelleiro, F., J. M. Taboada, J. L. Rodríguez, J. O. Rubiños, and A. M. Arias, "Hybrid moment-method physical-optics formulation for modeling the electromagnetic behavior of on-board antennas," Microw. Opt. Technol. Lett., Vol. 27, No. 2, 88-93, Oct. 2000.
doi:10.1002/1098-2760(20001020)27:2<88::AID-MOP3>3.0.CO;2-4

3. Ma, J., et al., "E±cient IE-FFT and PO hybrid analysis of antennas around electrically large platforms," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 611-614, 2011.

4. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equation of electromagnetic scattering," Microw. Opt. Technol. Lett., Vol. 10, No. 1, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107

5. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

6. Song, J. M. and W. C. Chew, "Fast multipole method solution of combined field integral equation," 11th Annual Review of Orogress in Applied Computational Electromagnetics, Vol. 1, 629-636, Monterey, California, Mar. 1995.

7. Rokhlin, V., "Rapid solution of integral equations of classical potential theory," J. Comput. Phys., Vol. 60, 187-207, 1985.
doi:10.1016/0021-9991(85)90002-6

8. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128

9. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-Aided Design Integr. Circuits Syst., Vol. 16, No. 10, 1059-1072, Oct. 1997.
doi:10.1109/43.662670

10. Phillips, J. R., "Error and complexity analysis for a collocation grid projection plus precorrected- FFT algorithm for solving potential integral equations with Laplace or Helmholtz kernels," Proc. 1995 Copper Mountain Conf. Multigrid Methods, 673-688, Apr. 1995.

11. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

12. Wang, C. F., F. Ling, J. M. Song, and J. M. Jian, "Adaptive integral solution of combined field integral equation," Microw. Opt. Technol. Lett., Vol. 19, No. 5, 321-328, 1998.
doi:10.1002/(SICI)1098-2760(19981205)19:5<321::AID-MOP3>3.0.CO;2-G

13. Seo, S. M. and J. F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problem," IEEE Transactions on Magnetics, Vol. 41, No. 5, 1476-1479, 2005.
doi:10.1109/TMAG.2005.844564

14. Ma, J., S. X. Gong, X. Wang, Y. Liu, and Y. X. Xu, "E±cient wide-band analysis of antennas around a conducting platform using MoM-PO hybrid method and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 60, No. 12, 6048-6052, 2012.
doi:10.1109/TAP.2012.2210272

15. Peng, Z. and X. Q. Sheng, "A bandwidth estimation approach for the asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 56, No. 3, 913-917, 2008.
doi:10.1109/TAP.2008.917017

16. Nie, X. C., N. Yuan, L. W. Li, and Y. B. Gan, "Fast analysis of RCS over a frequency band using pre-corrected FFT/AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3526-3533, 2008.
doi:10.1109/TAP.2008.2005455

17. Wang, X., S. X. Gong, J. L. Guo, Y. Liu, and P. F. Zhang, "Fast and accurate wide-band analysis of antennas mounted on conducting platform using AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propagat., Vol. 59, No. 12, 4624-4633, 2011.
doi:10.1109/TAP.2011.2165495

18. Güdü, T. and L. Alatan, "Use of asymptotic waveform evaluation technique in the analysis of multilayer structures with doubly periodic dielectric gratings," IEEE Trans. Antennas Propagat., Vol. 57, No. 9, 2641-2649, 2009.
doi:10.1109/TAP.2009.2027050

19. Burke, G. J., et al., "Using model-based parameter estimation to increase the e±ciency of computing electromagnetic transfer functions," IEEE Transactions on Magnetics, Vol. 25, No. 7, 2807-2809, Jul. 1989.

20. Hernandez, M. A., "Chebyshev's approximation algorithms and applications," Computers & Mathematics with Applications, Vol. 41, No. 3-4, 433-455, 2001.
doi:10.1016/S0898-1221(00)00286-8

21. Chen, M. S., X. L. Wu, Z. X. Huang, and W. Sha, "Accurate computation of wideband response of electromagnetic scattering problems via Maehly approximation," Microw. Opt. Technol. Lett., Vol. 49, No. 5, 1144-1146, 2007.
doi:10.1002/mop.22367

22. Chen, M. S., X. L. Wu, W. Sha, and Z. X. Huang, "Fast and accurate radar cross-section computation over a broad frequency band using the best uniform rational approximation," IET Microw. Antennas Propag., Vol. 2, 200-204, Feb. 2008.
doi:10.1049/iet-map:20070155


© Copyright 2010 EMW Publishing. All Rights Reserved