PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 61 > pp. 111-122

INTEGRATION OF IMAGE SEGMENTATION METHOD IN INVERSE SCATTERING FOR BRAIN TUMOUR DETECTION

By E. J. Joseph, K. A. H. Ping, K. Kipli, D. A. A. Mat, S. Sahrani, D. N. A. Zaidel, M. I. Sariphn, and M. H. Marhaban

Full Article PDF (1,545 KB)

Abstract:
This paper presents a microwave imaging for brain tumour detection utilizing Forward-Backward Time-Stepping (FBTS) inverse scattering technique. This technique is applied to solve electromagnetic scattered signals. It is proven that this technique is able to detect the presence of tumour in the breast. The application is now extended to brain imaging. Two types of results are presented in this paper; FBTS and FBTS integrated with image segmentation as a pre-processing step to form a focusing reconstruction. The results show that the latter technique has improved the reconstructions compared to the primary technique. Integration of the image segmentation step helps to reduce the variation of the estimated dielectric properties of the head tissues. It is also found that the optimal frequency used for microwave brain imaging is at 2 GHz and able to detect a tumour as small as 5 mm in diameter. The numerical simulations show that the integration of image segmentation with FBTS has the potential to provide useful quantitative information on the head internal composition.

Citation:
E. J. Joseph, K. A. H. Ping, K. Kipli, D. A. A. Mat, S. Sahrani, D. N. A. Zaidel, M. I. Sariphn, and M. H. Marhaban, "Integration of Image Segmentation Method in Inverse Scattering for Brain Tumour Detection," Progress In Electromagnetics Research M, Vol. 61, 111-122, 2017.
doi:10.2528/PIERM17070603

References:
1. National Research Funding, "Addressing the historic underfunding of brain tumour research,", Milton Keyness, England, 2016.

2. American Brain Tumour Association, "Brain tumour statistics," National Research Funding, [Online], Available: http://www.abta.org/about-us/news/brain-tumor-statistics/, Accessed: Dec. 30, 2016.
doi:10.1227/01.NEU.0000073546.61154.9A

3. Chang, E. L., S. J. Hassenbusch, S. S. Almon, F. F. Lang, P. L. Allen, R. Sawaya, and M. H. Maor, "The role of tumour size in the Radio Surgical management of Patients with ambiguous brain metastases," Neurosurgery, Vol. 53, No. 2, 272-281, 2003.
doi:10.1109/LAWP.2013.2247018

4. Hossain, M. D., A. S. Mohan, and M. J. Abedin, "Beamspace time-reversal microwave imaging for breast cancer detection," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 241-244, 2013.
doi:10.1109/LAWP.2013.2255095

5. Mustafa, S., B. Mohammed, and A. Abbosh, "Novel preprocessing techniques for accurate microwave imaging of human brain," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 460-463, 2013.
doi:10.1109/TMTT.2014.2342669

6. Mobashsher, A. T., A. M. Abbosh, and Y. Wang, "Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 9, 1826-1836, 2014.
doi:10.1109/TIM.2010.2045540

7. Henriksson, T., N. Joachimowicz, C. Conessa, and J. Bolomey, "Quantitative microwave imaging for breast cancer detection using a planar 2.45 GHz system," IEEE Trans. Instrum. Meas., Vol. 59, No. 10, 2691-2699, 2010.
doi:10.1109/TIM.2013.2277562

8. Mohammed, B. J., A. M. Abbosh, S. Mustafa, and D. Ireland, "Microwave system for head imaging," IEEE Trans. Instrum. Meas., Vol. 63, No. 1, 117-123, 2014.

9. Al Sharkawy, M., M. Sharkas, and D. Ragab, "Breast cancer detection using support vector machine technique applied on extracted electromagnetic waves," Appl. Comput. Electromagn. Soc. J., Vol. 27, No. 4, 292-301, 2012.

10. Alqallaf, A. K., R. K. Dib, and S. F. Mahmoud, "Microwave imaging using synthetic radar scheme processing for the detection of breast tumours," Appl. Comput. Electromagn. Soc. J., Vol. 31, No. 2, 98-105, 2016.

11. Bowman, T. C., A. M. Hassan, and M. El-shenawee, "Imaging 2D breast cancer tumour margin at terahertz frequency using numerical field data based on DDSCAT," Appl. Comput. Electromagn. Soc. Journal, Vol. 28, No. 11, 1017-1024, 2013.

12. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method," J. Electromagn. Waves Apllied, Vol. 14, No. 12, 1611-1628, 2000.
doi:10.1109/URSI-EMTS.2010.5637368

13. Takenaka, T., T. Moriyama, K. A. Hong Ping, and T. Yamasaki, "Microwave breast imaging by the filtered forward-backward time-stepping method," 2010 URSI International Symposium on Electromagnetic Theory, 946-949, 2010.
doi:10.1109/TBME.2007.899364

14. Johnson, J. E., T. Takenaka, and T. Tanaka, "Two-dimensional time-domain inverse scattering for quantitative analysis of breast composition," IEEE Trans. Biomed. Eng., Vol. 55, No. 8, 1941-1945, 2008.

15. Ping, K. A. H., T. Moriyama, T. Takenaka, and T. Tanaka, "Two-dimensional forward-backward time-stepping approach for tumor detection in dispersive breast tissues," Mediterranean Microwave Symposium, MMS 2009, 2009.

16. Cocosco, C. A., V. Kollokian, R. K. S., and A. C. Kwan, "BrainWe: online interface to a 3D MRI simulated brain database," Neuro Image, Vol. 5, No. 4, 1997.

17., "Brainweb: simulated brain database," McConnel Brain Imaging Centre, [Online], Available: http://brainweb.bic.mni.mcgill.ca/. (Accessed: 24-Oct-2015).

18. Canada, H., "Limits of human exposure to radio frequency electromagnetic energy in the frequency range from 3 kHz to 300 GHz," Saf. Code, 2015.
doi:10.1109/MMW.2003.1266063

19. Lin, J. C., "Safety standard for human exposure to radio frequency radiation and their biological rationale," IEEE Microwave Magazine, Vol. 4, No. 4, 22-26, 2003.
doi:10.1049/cp:20080454

20. Ping, K. A. H., T. Moriyama, T. Takenaka, and T. Tanaka, "Reconstruction of breast composition in a free space utilizing 2-D forward-backward time-stepping for breast cancer detection," 4th IET International Conference on Advances in Medical, Signal and Information Processing (MEDSIP 2008), 313, 2008.
doi:10.1109/ICBAPS.2015.7292222

21. Yong, G., K. A. Hong Ping, A. Sia Chew Chie, S. W. Ng, and T. Masri, "Preliminary study of Forward-Backward Time-Stepping technique with edge-preserving regularization for object detection applications," 2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), 77-81, 2015.
doi:10.2528/PIERM16051907

22. Ng, S. W., K. A. H. Ping, S. Sahrani, M. H. Marhaban, M. I. Saripan, T. Moriyama, and T. Takenaka, "Preliminary results on estimation of the dispersive dielectric properties of an object utilizing frequency-dependent forward-backward time-stepping technique," Progress In Electromagnetics Research M, Vol. 49, 61-68, 2016.
doi:10.1109/TBME.2009.2022635

23. Johnson, J. E., T. Takenaka, K. A. H. Ping, S. Honda, and T. Tanaka, "Advances in the 3-D forward-backward time-stepping (FBTS) inverse scattering technique for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 56, No. 9, 2232-2243, 2009.
doi:10.1109/LAWP.2014.2376981

24. Giannakis, I. and A. Giannopoulos, "Time synchronized convolutional perfectly matched layer for improved absorbing performance in FDTD," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 690-693, 2015.
doi:10.1109/9780470544518

25. Sullivan, D. M., Electromagnetic Simulations Using the FDTD Method, IEEE Press Marketing, New York, 2000.

26. Vala, H. J. and A. Baxi, "A review on Otsu image segmentation algorithm," Int. J. Adv. Res. Comput. Eng. Technol., Vol. 1, No. 4, 387-389, 2013.
doi:10.1109/TSMC.1979.4310076

27. Otsu, N., "A threshold selection method from gray level histogram," IEEE Trans. Syst. Man. Cybern., Vol. 9, 62-66, 1979.

28. Khan, W., "Image segmentation techniques: A survey," J. Image Graph., Vol. 2, No. 1, 6-9, 2013.

29. Liao, P. S., T. S. Chen, and P. C. Chung, "A fast algorithm for multilevel thresholding," J. Inf. Sci. Eng., Vol. 17, 713-727, 2001.
doi:10.1109/TAP.2013.2296323

30. Mustafa, S., A. M. Abbosh, and P. T. Nguye, "Modeling human head tissues using fourth-order Debye model in convolution-based three-dimensional finite-difference time-domain," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1354-1361, 2014.
doi:10.1002/bem.20021

31. Yoo, D.-S., "The dielectric properties of cancerous tissues in a nude mouse xenograft model," Bioelectromagnetics, Vol. 25, No. 7, 492-497, Oct. 2004.
doi:10.1109/CEEM.2015.7368656

32. Thourn, K., T. Aoyagi, and J. Takada, "Numerical simulation of 2D scattering by a lossy dielectric cylinder using Debye modelling of absorbing material and pulse excitation source," 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), 165-168, 2015.
doi:10.1088/0031-9155/52/8/013

33. Peyman, A., S. J. Holden, S. Watts, R. Perrott, and C. Gabriel, "Dielectric properties of porcine cerebrospinal tissues at microwave frequencies: in vivo, in vitro and systematic variation with age," Phys. Med. Biol., Vol. 52, No. 8, 2229-2245, Apr. 2007.
doi:10.1088/0031-9155/54/2/004

34. Peyman, A., C. Gabriel, E. H. Grant, G. Vermeeren, and L. Martens, "Variation of the dielectric properties of tissues with age: The effect on the values of SAR in children when exposed to walkie-talkie devices," Phys. Med. Biol., Vol. 54, No. 2, 227-241, Jan. 2009.


© Copyright 2010 EMW Publishing. All Rights Reserved