PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 76 > pp. 217-230

INVERSE SOURCE OF CIRCUMFERENCE GEOMETRIES: SVD INVESTIGATION BASED ON FOURIER ANALYSIS

By G. Leone, M. A. Maisto, and R. Pierri

Full Article PDF (483 KB)

Abstract:
The role of the source geometry is investigated within the realm of inverse source problems. In order to examine the properties of the far zone radiation operator of some 2D curved sources its Singular Value Decomposition (SVD) is studied, either analytically, when possible, or numerically. This allows to evaluate the number of independent pieces of information, i.e. the number of degrees of freedom (NDF), of the source and to point out the set of far zone fields corresponding to stable solutions of the inverse problem. In particular, upper bounds for the NDF are obtained by exploiting Fourier series representations of the singular functions. Both curved (i.e. circumference and arc of circumference) and rectilinear geometries are considered, pointing out the role of limited angular observation domains. Moreover, in order to obtain some clues about the resolution achievable in the inverse source problem, a point-spread function analysis is performed. The latter reveals a spatially variant resolution for limited angular observation domains. The practical relevance ofthese results is highlighted with numerical examples of array diagnostics.

Citation:
G. Leone, M. A. Maisto, and R. Pierri, "Inverse Source of Circumference Geometries: SVD Investigation Based on Fourier Analysis," Progress In Electromagnetics Research M, Vol. 76, 217-230, 2018.
doi:10.2528/PIERM18062102

References:
1. Leone, G., "Source geometry optimization for hemispherical radiation pattern coverage," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 2033-2038, May 2016.
doi:10.1109/TAP.2016.2536165

2. Li, W. T., X. W. Shi, Y. Q. Hei, S. F. Liu, and J. Zhu, "A hybrid optimization algorithm and its application for conformal array pattern synthesis," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3401-3406, 2010.
doi:10.1109/TAP.2010.2050425

3. Persson, K., M. Gustafsson, G. Kristensson, and B. Widenberg, "Source reconstruction by far-field data for imaging of defects in frequency selective radomes," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 480-483, 2013.
doi:10.1109/LAWP.2013.2256100

4. Di Francia, G. T., "Degrees of freedom of an image," Journal of the Optical Society of America, Vol. 59, 799-804, 1969.
doi:10.1364/JOSA.59.000799

5. Newsam, G. and R. Barakat, "Essential dimension as a well-defined number of degrees of freedom of finite-convolution operators appearing in optics," Journal of the Optical Society of America, Vol. 2, 2040-2045, 1985.
doi:10.1364/JOSAA.2.002040

6. Riesz, F. and B. Nagy, Functional Analysis, Dover, 1990.

7. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, IOP Publishing, 1998.
doi:10.1887/0750304359

8. Solimene, R., M. A. Maisto, and R. Pierri, "Inverse source in the presence of a reflecting plane for the strip case," Journal of the Optical Society of America A, Vol. 31, No. 12, 2814-2820, 2014.
doi:10.1364/JOSAA.31.002814

9. Solimene, R., M. A. Maisto, and R. Pierri, "Role of diversity on the singular values of linear scattering operators: The case of strip objects," Journal of the Optical Society of America A, Vol. 30, No. 11, 2266-2272, 2013.
doi:10.1364/JOSAA.30.002266

10. Solimene, R., M. A. Maisto, G. Romeo, and R. Pierri, "On the singular spectrum of the radiation operator for multiple and extended observation domains," International Journal of Antennas and Propagation, http://dx.doi.org/10.1155/2013/585238, 2013.

11. Solimene, R., M. A. Maisto, and R. Pierri, "Inverse scattering in the presence of a reflecting plane," Journal of Optics, Vol. 18, No. 2, 025603, 2015.
doi:10.1088/2040-8978/18/2/025603

12. Leone, G., M. A. Maisto, and R. Pierri, "Application of inverse source reconstruction to conformal antennas synthesis," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1436-1445, Mar. 2018.
doi:10.1109/TAP.2018.2794397

13. Solimene, R. and R. Pierri, "Number of degrees of freedom of the radiated field over multiple bounded domain," Optics Letters, Vol. 32, No. 21, 3113-3115, 2007.
doi:10.1364/OL.32.003113

14. Slepian, D. and H. O. Pollack, "Prolate spheroidal wave functions, Fourier analysis, and uncertainty - I," Bell Syst. Techn. J., Vol. 40, 43-63, 1961.
doi:10.1002/j.1538-7305.1961.tb03976.x

15. Landau, H. J. and H. O. Pollack, "The eigenvalue distribution of time and frequency limiting," J. Math. Phys., Vol. 77, 469-481, 1980.

16. Leone, G., M. A. Maisto, and R. Pierri, "Inverse source reconstruction for the synthesis on conformal domains," 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, Sep. 2017.

17. Leone, G., M. A. Maisto, and R. Pierri, "First step towards a comparison between 3D source geometries for conformal antennas," 12th European Conference on Antennas and Propagation (EUCAP 2018), London, UK, Apr. 2018.


© Copyright 2010 EMW Publishing. All Rights Reserved