1. Gregory, T. S., Z. T. Tse, and D. Lewis, "Drones: Balancing risk and potential," Science, Vol. 347, No. 6228, 1323, 2015. Google Scholar
2. Song, Y., B. Horton, and J. Bayandor, "Investigation of UAS ingestion into high-bypass engines, Part I: Bird vs. drone," 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Reston, Virginia, 2017. Google Scholar
3. Schroeder, K., Y. Song, B. Horton, and J. Bayandor, "Investigation of UAS ingestion into high-bypass engines, Part II: Parametric drone study," 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Reston, Virginia, 2017. Google Scholar
4. Gettinger, D. and A. Holland Michel, "Drone sightings and close encountes: An analysis,", Center for the Study of the Drone at Bard College, 2015. Google Scholar
5. Nohara, T. J., R. C. Beason, and P. Weber, "Using radar cross-section to enhance situational awareness tools for airport avian radars," Human-Wildlife Interact., Vol. 5, No. 2, 2011. Google Scholar
6. Jahangir, M., C. J. Baker, and G. A. B. T.-R. C. Oswald, "Doppler characteristics of micro-drones with L-Band multibeam staring radar," IEEE Radar Conference, 1052-1057, 2017. Google Scholar
7. Troxel, S., B. Echels, W. Pughe, and M. Weber, "Progress report on development of a terminal area bird detection and monitoring system using the ASR-9," Bird Strike Comm., 2002. Google Scholar
8. Molchanov, P., K. Egiazarian, J. Astola, et al. "Classification of small UAVs and birds by micro-Doppler signatures," European Radar Conference, 435-444, 2013. Google Scholar
9. Torvik, B., K. E. Olsen, and H. Griffiths, "Classification of birds and UAVs based on radar polarimetry," IEEE Geosci. Remote Sens. Lett., Vol. 13, No. 9, 1305-1309, 2016. Google Scholar
10. Dolbeer, R., S. E. Wright, J. R. Weller, A. L. Anderson, and M. J. Beiger, "Wildlife strikes to civil aircraft in the United States, 1990-2014," Bird Strikes, 2015. Google Scholar
11. Fox, A. D. and P. D. L. Beasley, "David Lack and the birth of radar ornithology," Arch. Nat. Hist., Vol. 37, No. 2, 325-332, 2010. Google Scholar
12. Gauthreaux, S., "Radar ornithology and biological conservation," Auk, Vol. 120, 266-277, 2009. Google Scholar
13. Moon, J. R., "Effects of birds on radar tracking systems," IET Conference Publication, Vol. 490, 300-304, 2002. Google Scholar
14. Harman, S., "A comparison of staring radars with scanning radars for UAV detection: Introducing the AlarmTM staring radar," IEEER Adar Conference, 2015. Google Scholar
15. Gustavsson, M., A. Andersson, T. Johansson, et al. "Micro-Doppler extraction of a small UAV in a non-line-of-sight urban scenario," Radar Sensor Technology XXI, International Society for Optics and Photonics, 2017. Google Scholar
16. Harman, S., "Characteristics of the radar signature of multi-rotor UAVs," IEEE Radar Conference, 2016. Google Scholar
17. Stein, K. U., et al. "Numerical RCS and micro-Doppler analysis of a consumer UAV," SPIE Proceedings [SPIE SPIE Security + Defence - Edinburgh, United Kingdom (Monday, September 26, 2016)] Target and Background Signatures II, 2016. Google Scholar
18. Ren, J. and X. Jiang, "Regularized 2-D complex-log spectral analysis and subspace reliability analysis of micro-Doppler signature for UAV detection," Pattern Recognit., 2017. Google Scholar
19. Ritchie, M. A., F. Fioranelli, H. Griffiths, et al. "Monostatic and bistatic radar measurements of birds and micro-drone," IEEE Radar Conference, 2016. Google Scholar
20. Manfred, B., A. F. Jacob, and S. Lorenz-Peter, "Classification of small UAVs and birds by micro-Doppler signatures," Int. J. Microw. Wirel. Technol., Vol. 6, No. 3-4, 435-444, 2014. Google Scholar
21. Gauthreaux, S. A., "Radar ornithology and biological conservation," Auk, Vol. 120, No. 2, 266-277, 2003. Google Scholar
22. Skolnik, M., Radar Handbook, McGraw-Hill Education, 2008.
23. Tait, P., Introduction to Radar Target Recognition, Institution of Electrical Engineers, 2005.
24. U. S. D. of Transportation and U. S. F. A. Administration "Airport Avian Radar Systems - Advisory Circular 150/5220-25,", 2010. Google Scholar
25. Melnikov, V. M., R. R. Lee, and N. J. Langlieb, "Resonance effects within S-band in echoes from birds," IEEE Geosci. Remote Sens. Lett., Vol. 9, No. 3, 413-416, 2012. Google Scholar
26. Bruderer, B., D. Peter, A. Boldt, and F. Liechti, "Wing-beat characteristics of birds recorded with tracking radar and cine camera," Ibis (Lond. 1859), Vol. 152, No. 2, 272-291, 2010. Google Scholar
27. Zaugg, S., G. Saporta, E. van Loon, H. Schmaljohann, and F. Liechti, "Automatic identification of bird targets with radar via patterns produced by wing flapping," J. R. Soc. Interface, Vol. 5, No. 26, 1041-1053, 2008. Google Scholar
28. Bonham, L. L. and L. V. Blake, "Radar echoes from birds and insects," Sci. Mon., Vol. 82, No. 4, 204-209, 1956. Google Scholar
29. Blacksmith, Jr., P. and R. B. Mack, "On measuring the radar cross sections of ducks and chickens," Proc. IEEE, Vol. 53, No. 8, 1125, 1965. Google Scholar
30. Konrad, T. G., J. J. Hicks, and E. B. Dobson, "Radar characteristics of birds in flight. Radar tracking of known single birds indicates a characteristic radar signature," Science, Vol. 159, No. 3812, 274-280, 1968. Google Scholar
31. Vaughn, C. R., "Birds and insects as radar targets: A review," Proc. IEEE, Vol. 73, No. 2, 205-227, 1985. Google Scholar
32. O'Neal, B. J., J. D. Stafford, and R. P. Larkin, "Waterfowl on weather radar: Applying ground-truth to classify and quantify bird movements," J. F. Ornithol., Vol. 81, No. 1, 71-82, 2010. Google Scholar
33. Torvik, B., K. E. Olsen, and H. Griffiths, "K-band radar signature analysis of a flying mallard duck," 14th International Radar Symposium (IRS), Vol. 2, 584-591, 2013. Google Scholar
34. Torvik, B., K. E. Olsen, and H. D. Griffiths, "X-band measurements of radar signatures of large sea birds," International Radar Conference, 1-6, 2014. Google Scholar
35. Urmy, S. S. and J. D. Warren, "Quantitative ornithology with a commercial marine radar: Standard-target calibration, target detection and tracking, and measurement of echoes from individuals and flocks," Methods Ecol. Evol., Vol. 8, 2016. Google Scholar
36. Van Doren, B. M. and K. G. Horton, "A continental system for forecasting bird migration," Science, Vol. 361, No. 6407, 1115-1118, 2018. Google Scholar
37. Ritchie, M., F. Fioranelli, H. Griffiths, and B. B. T.-R. C. Torvik, "Micro-drone RCS analysis," Radar Conference IEEE, 452-456, 2016. Google Scholar
38. Pieraccini, M., L. Miccinesi, and N. Rojhani, "RCS measurements and ISAR images of small UAVs," IEEE Aerosp. Electron. Syst. Mag., Vol. 32, No. 9, 28-32, 2017. Google Scholar
39. Farlik, J., M. Kratky, J. Casar, and V. B. T.-I. C, "Radar cross section and detection of small unmanned aerial vehicles," IEEE International Conference on Mechatronics-Mechatronika, 452-456, 2017. Google Scholar
40. Nakamura, R. and H. Hadama, "Characteristics of ultra-wideband radar echoes from a drone," IEICE Commun. Express, Vol. 6, 2017. Google Scholar
41. Harmanny, R. I. A., J. J. M. De Wit, and G. Prémel Cabic, "Radar micro-Doppler feature extraction using the spectrogram and the cepstrogram," Euma, 165-168, 2014. Google Scholar
42. Mohajerin, N., J. Histon, R. Dizaji, and S. L. B. T.-R. C. Waslander, "Feature extraction and radar track classification for detecting UAVs in civillian airspace," IEEE Radar Conference, 674-679, 2014. Google Scholar
43. Li, C. and H. Ling, "An investigation on the radar signatures of small consumer drones," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 649-652, 2017. Google Scholar