Vol. 99

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-12-04

Design of Metamaterial Based Multilayer Antenna for Navigation/WiFi /Satellite Applications

By Aneri Pandya, Trushit K. Upadhyaya, and Killol Pandya
Progress In Electromagnetics Research M, Vol. 99, 103-113, 2021
doi:10.2528/PIERM20100105

Abstract

Wireless communication plays a vital role in transmitting information from one point to another. Wireless devices have to be smart, intelligent, compact in size and cost effective to meet the demand of wireless communication. A multi-layered, Split Ring Resonator (SRR), negative permeability material inspired antenna has been designed, analyzed, fabricated, and measured. The developed antenna resonates at 1.13 GHz, 2.47 GHz, and 2.74 GHz frequencies with gain of 3.73 dBi, 6.18 dBi, 1.35 dBi, and bandwidth of 2.10%, 2.81%, and 2.09%, respectively. The structure utilizes FR4 material as a substrate. The engineered model has applications in navigation, WiFi, and satellite communication applications.

Citation


Aneri Pandya, Trushit K. Upadhyaya, and Killol Pandya, "Design of Metamaterial Based Multilayer Antenna for Navigation/WiFi /Satellite Applications," Progress In Electromagnetics Research M, Vol. 99, 103-113, 2021.
doi:10.2528/PIERM20100105
http://www.jpier.org/PIERM/pier.php?paper=20100105

References


    1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    2. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 963-966, 2011.
    doi:10.1109/LAWP.2011.2167309

    3. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandöken, "Novel stacked μ-negative material-loaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229, 2016.
    doi:10.1017/S175907871400138X

    4. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material-inspired 90-deg electrically tilted ultra wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, 2014.
    doi:10.1117/1.OE.53.10.107104

    5. Islam, M. M., M. T. Islam, and M. R. Faruque, "Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands," Scientific World Journal, Vol. 2013, 378420, 2013.

    6. Patel, U. and T. K. Upadhyaya, "Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research, Vol. 79, 11-22, 2019.
    doi:10.2528/PIERM18121502

    7. Sarkar, D., K. Saurav, and K. V. Srivastava, "Multi-band microstrip-fed slot antenna loaded with split-ring resonator," Electron. Lett., Vol. 50, 1498-1500, 2014.
    doi:10.1049/el.2014.2625

    8. Wan, Y.-T., D. Yu, F.-S. Zhang, and F. Zhang, "Miniature multi-band monopole antenna using spiral ring resonators for radiation pattern characteristics improvement," Electron. Lett., Vol. 49, 382-384, 2013.
    doi:10.1049/el.2012.3980

    9. Basaran, S. C., U. Olgun, and K. Sertel, "Multiband monopole antenna with complementary split-ring resonators for WLAN and WiMAX applications," Electron. Lett., Vol. 49, 636-638, 2013.
    doi:10.1049/el.2013.0357

    10. Patel, R. H., A. H. Desai, and T. Upadhyaya, "Design of H-shape X-band application electrically small antenna," International Journal of Electrical Electronics and Data Communication (IJEEDC), Vol. 3, 1-4, 2015.

    11. Sim, C. Y. D., H. D. Chen, K. C. Chiu, and C. H. Chao, "Coplanar waveguide fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications," IET Microw. Antenna Propag., Vol. 6, No. 14, 1529-1535, 2012.
    doi:10.1049/iet-map.2012.0174

    12. Xu, H. X., G. M. Wang, and M. Q. Qi, "A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.
    doi:10.2528/PIER12081008

    13. Pan, C. Y., T. S. Horng, W. S. Chen, and C. H. Huang, "Dual wideband printed monopole antenna for WLAN/WiMAX applications," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 149-151, 2007.
    doi:10.1109/LAWP.2007.891957

    14. Xu, H. X., et al., "Analysis and design of two-dimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 735-747, 2013.
    doi:10.1109/TAP.2012.2215298

    15. Xu, H. X., G. M. Wang, Y. Y. Lv, M. Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branchcircuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
    doi:10.2528/PIER12122409

    16. Xu, H. X., G. M. Wang, M. Q. Qi, and T. Cai, "Compact fractal left-handed structures for improved cross-polarization radiation pattern," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 546-554, 2014.
    doi:10.1109/TAP.2013.2290308

    17. Li, J., Y. Cheng, Y. Nie, and R. Gong, "Metamaterial extends microstrip antenna," Microwaves RF, Vol. 52, 69-73, 2013.

    18. Hamad, E. K. I. and A. Abdelaziz, "Performance of a metamaterial-based 1 × 2 microstrip patch antenna array for wireless communications examined by characteristic mode analysis," Radioengineering, Vol. 28, No. 4, 681, 2019.
    doi:10.13164/re.2019.0680

    19. Hamad, E. K. I. and A. Abdelaziz, "Metamaterial superstrate microstrip patch antenna for 5G wireless communication based on the theory of characteristic modes," Journal of Electrical Engineering, Vol. 70, No. 3, 187-197, 2019.
    doi:10.2478/jee-2019-0027

    20. Kaur, H. and A. Sharma, "Microstrip patch antennas using metamaterials: A review," International Journal of Electronics, Electrical and Computational System, Vol. 6, No. 6, 130-133, 2017.

    21. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104-195109, 2002.
    doi:10.1103/PhysRevB.65.195104

    22. Singh, H. P. and R. Y. Kumar, "Design and simulation of rectangular microstrip patch antenna loaded with metamaterial structure," Electric Electron. Tech. Open Acc. J., Vol. 1, No. 2, 00012, 2017.

    23. Gangwar, K. P., P. R. P. S. Gangwar, and R. Verma, "Multiband microstrip patch antenna using metamaterial structure," 2nd International Conference on Emerging Trends in Technology and Applied Sciences (ICETTAS'15), 2018.

    24. Islam, M. R., A. A. Alsaleh Adel, A. W. N. Mimi, M. Sarah Yasmin, and F. A. M. Norun, "Design of dual band microstrip patch antenna using metamaterial," IOP Conference Series: Materials Science and Engineering, Vol. 260, No. 1, 012037, IOP Publishing, 2017.
    doi:10.1088/1757-899X/1067/1/012037

    25. Li, L.-W., Y.-N. Li, T.-S. Yeo, J. R. Mosig, and O. J. F. Martin, "A broadband and high-gain metamaterial microstrip antenna," Applied Physics Letters, Vol. 96, No. 6, 164101, April 2010.

    26. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with lefthanded metamaterials," IEEE Trans. Antennas Propag., Vol. 57, 331-338, 2009.
    doi:10.1109/TAP.2008.2011230

    27. Lee, C. J., K. M. K. H. Leong, and T. Itoh, "Composite right/left-handed transmission line based compact resonant antennas for RF module integration," IEEE Trans. Antennas Propag., Vol. 54, 2283-2291, 2006.
    doi:10.1109/TAP.2006.879199

    28. Iizuka, H. and P. S. Hall, "Left-handed dipole antennas and their implementations," IEEE Trans. Antennas Propag., Vol. 55, 1246-1253, 2007.
    doi:10.1109/TAP.2007.895568

    29. Vahora, A. and K. Pandya, "Implementation of cylindrical dielectric resonator antenna array for Wi-Fi/wireless LAN/satellite applications," Progress In Electromagnetics Research, Vol. 90, 157-166, 2020.
    doi:10.2528/PIERM20011604

    30. Pimpalgaonkar, P. R., T. K. Upadhyaya, K. Pandya, M. R. Chaurasia, and B. T. Raval, "A review on dielectric resonator antenna," 1st International Conference on Automation in Industries (ICAI), 106-109, June 2016.

    31. Vahora, A. and K. Pandya, "Triple band dielectric resonator antenna array using power divider network technique for GPS navigation/bluetooth/satellite applications," International Journal of Microwave and Optical Technology, Vol. 15, 369-378, July 2020.

    32. Vahora, A. and K. Pandya, "Microstrip feed two elements pentagon dielectric resonator antenna array," 2019 International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET), 22-25, IEEE, 2019.
    doi:10.1109/ICITAET47105.2019.9170140

    33. Pimpalgaonkar, P. R., M. R. Chaurasia, B. T. Raval, T. K. Upadhyaya, and K. Pandya, "Design of rectangular and hemispherical dielectric resonator antenna," 2016 International Conference on Communication and Signal Processing (ICCSP), 1430-1433, IEEE, 2016.
    doi:10.1109/ICCSP.2016.7754392

    34. Patel, A., Y. Kosta, N. Chhasatia, and K. Pandya, "Multiple band waveguide based microwave resonator," IEEE International Conference on Advances in Engineering, Science and Management (ICAESM-2012), 84-87, IEEE, March 2012.