1. Zarko, V. E. and A. A. Gromov, Energetic Nanomaterials: Synthesis, Characterization, and Application, Elsevier, 2016.
2. Gromov, A. A., T. A. Khabas, A. P. Il'in, E. M. Popenko, V. A. Arkhipov, A. G. Korotkikh, A. A. Dits, and L. O. Tolbanova, Combustion of Metal Nanopowders, Deltaplan, 2008.
3. Rogachev, A. S. and A. S. Mukasyan, "Combustion of heterogeneous nanostructural systems (Review)," Combust. Explos. Shock Waves, Vol. 46, 243-266, 2010.
doi:10.1007/s10573-010-0036-2 Google Scholar
4. Abdel-Hafez, A. A., M. W. Brodt, J. R. Carney, and J. M. Lightstone, "Laser dispersion and ignition of metal fuel particles," Rev. Sci. Instrum., Vol. 82, No. 6, 064101, 2011.
doi:10.1063/1.3598341 Google Scholar
5. Naumov, I. S., "Simulation of flame propagation on the surface of multilayer materials," Perm Journal of Petroleum and Mining Engineering, Vol. 12, No. 7, 138-152, 2013. Google Scholar
6. Poriazov, V. A., "The influence of aluminum particle dispersion on the burning rate of metallized solid propellants," Tomsk State University Journal of Mathematics and Mechanics, Vol. 33, No. 1, 96-104, 2015.
doi:10.17223/19988621/33/10 Google Scholar
7. Li, L., A. V. Mostovshchikov, A. P. Ilyin, A. Smirnov, and F. A. Gubarev, "Optical system with brightness amplification for monitoring the combustion of aluminum-based nanopowders," IEEE T. Instrum. Meas., Vol. 69, No. 2, 457-468, 2020.
doi:10.1109/TIM.2019.2903616 Google Scholar
8. Li, L., A. V. Mostovshchikov, A. P. Ilyin, P. A. Antipov, D. V. Shiyanov, and F. A. Gubarev, "Imaging system with brightness amplification for a metal-nanopowder combustion study," J. Appl. Phys., Vol. 127, 194503, 2020.
doi:10.1063/1.5139508 Google Scholar
9. Li, L., A. V. Mostovshchikov, A. P. Ilyin, P. A. Antipov, D. V. Shiyanov, and F. A. Gubarev, "In situ nanopowder combustion visualization using laser systems with brightness amplification," Proc. Combust. Inst., 2020 (In Press), (https://doi.org/10.1016/j.proci.2020.08.048). Google Scholar
10. Wang, H., D. J. Kline, and M. R. Zachariah, "In-operando high-speed microscopy and thermometry of reaction propagation and sintering in a nanocomposite," Nat. Commun., Vol. 10, No. 1, 3032, 2019.
doi:10.1038/s41467-019-10843-4 Google Scholar
11. Sullivan, T., W. Chiou, R. Fiore, and M. R. Zachariah, "In situ microscopy of rapidly heated nano-Al and nano-Al/WO3 thermites," Appl. Phys. Lett., Vol. 97, 133104, 2010.
doi:10.1063/1.3490752 Google Scholar
12. Egan, G. C., K. T. Sullivan, T. LaGrange, B. W. Reed, and M. R. Zachariah, "In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates," J. Appl. Phys., Vol. 115, 084903, 2014.
doi:10.1063/1.4867116 Google Scholar
13. Evtushenko, G. S. (Ed.), Methods and Instruments for Visual and Optical Diagnostics of Objects and Fast Processes, Nova Science Publishers, 2018.
14. Petrash, G. G. (Ed.), Optical Systems with Brightness Amplifiers, Nauka, 1991.
15. Little, C. E. and N. V. Sabotinov (Ed.), Pulsed Metal Vapor Lasers, Kluwer Academic Publishers, 1996.
doi:10.1007/978-94-009-1669-2
16. Little, C. E., Metal Vapor Lasers: Physics, Engineering and Applications, John Willey & Sons Ltd., 1999.
17. Gubarev, F. A., A. V. Mostovshchikov, M. S. Klenovskii, A. P. Il'in, and L. Li, "Copper bromide laser monitor for combustion processes visualization," 2016 Progress In Electromagnetic Research Symposium (PIERS), 2666-2670, Shanghai, China, Aug. 8-11, 2016. Google Scholar
18. Li, L., A. V. Mostovshchikov, A. P. Il'in, and F. A. Gubarev, "Monitoring of Aluminum nanopowder combustion ignited by laser radiation," Progress In Electromagnetics Research Letters, Vol. 75, 125-130, 2018.
doi:10.2528/PIERL18022102 Google Scholar
19. Gubarev, F. A., S. Kim, L. Li, A. V. Mostovshchikov, and A. P. Il'in, "An optical system with brightness amplification for studying the surface of metal nanopowders during combustion," Instrum. Exp. Tech., Vol. 63, No. 3, 379-386, 2020.
doi:10.1134/S0020441220030173 Google Scholar
20. Ilyin, A. P., O. B. Nazarenko, and D. V. Tikhonov, "Synthesis and characterization of metal carbides nanoparticles produced by electrical explosion of wires," J. Nanosci. Nanotechnol., Vol. 12, 8137-8142, 2012.
doi:10.1166/jnn.2012.4515 Google Scholar
21. Rodriguez, R. D., S. Shchadenko, G. Murastov, A. Lipovka, M. Fatkullin, I. Petrov, T.-H. Tran, A. Khalelov, M. Saqib, N. E. Villa, V. Bogoslovskiy, Y. Wang, C.-G. Hu, A. Zinovyev, W. Sheng, J.-J. Chen, I. Amin, and E. Sheremet, "Ultra-robust flexible electronics by laser-driven polymer-nanomaterials integration," Adv. Funct. Mater., 2008818, 2021.
doi:10.1002/adfm.202008818 Google Scholar