Vol. 102
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-06-02
A Compact Tri-Band Flexible MIMO Antenna Based on Liquid Crystal Polymer for Wearable Applications
By
Progress In Electromagnetics Research M, Vol. 102, 217-232, 2021
Abstract
In this paper, a compact tri-band flexible MIMO antenna based on liquid crystal polymer (LCP) is designed to operate in WLAN and WiMAX bands. The antenna consists of two identical antenna elements. The isolation structure includes a ground slot, two I-shaped branches, and a parasitic strip. The measured results show that the impedance bandwidth (S11 < -10 dB) covers three frequency bands of 2.38-2.55 GHz, 3.37-3.60 GHz, and 4.92-5.37 GHz, and the S21 of working bands is basically better than -19 dB. Moreover, the flexibility of the MIMO antenna is analyzed at different bent cases. The specific absorption ratio (SAR) values are obtained by simulating the model of antenna approaching human body. The simulated results show that the SAR value of the antenna meets the European Union (EU) standard. The proposed antenna demonstrates the characteristics of satisfactory radiation, high isolation, sound gain in working bands and flexibility, which has good application prospects in the wearable field.
Citation
Chengzhu Du, Xun Wang, and Gao-Ya Jin, "A Compact Tri-Band Flexible MIMO Antenna Based on Liquid Crystal Polymer for Wearable Applications," Progress In Electromagnetics Research M, Vol. 102, 217-232, 2021.
doi:10.2528/PIERM21042002
References

1. Ling, X. and R. Li, "A novel dual-band MIMO antenna array with low mutual coupling for portable wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1039-1042, 2011.
doi:10.1109/LAWP.2011.2169035

2. Su, S., C.-T. Lee, and F.-S. Chang, "Printed MIMO-antenna system using neutralization-line technique for wireless USB-Dongle applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 456-463, Feb. 2012.
doi:10.1109/TAP.2011.2173450

3. Ding, Y., Z. Du, K. Gong, and Z. Feng, "A novel dual-band printed diversity antenna for mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 2088-2096, Jul. 2007.
doi:10.1109/TAP.2007.900249

4. Mak, A. C. K., C. R. Rowell, and R. D. Murch, "“Isolation enhancement between two closely packed antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3411-3419, Nov. 2008.
doi:10.1109/TAP.2008.2005460

5. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1732-1738, Jun. 2007.
doi:10.1109/TAP.2007.898618

6. Abdalla, M. A. and A. Ibrahim, "Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1452-1455, 2013.
doi:10.1109/LAWP.2013.2288338

7. Thompson, D. C. and J. H. Tantoto, "Characterization of Liquid Crystal Polymer (LCP) material and transmission lines on LCP substrates from 30–110 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1343-1352, 2004.
doi:10.1109/TMTT.2004.825738

8. Thompson, D., O. Tantot, J. Hubert, et al. "Characterization of LCP material andtransmission lines on the LCP from 30 to 110 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 4, 1343-1352, 2004.
doi:10.1109/TMTT.2004.825738

9. Dejean, G., R. Bairavasubramanian, D. Thompson, et al. "Liquid Crystal Polymer (LCP): A new organic material for the development of multilayer dual-frequency/dual-polarization flexible antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 4, No. 1, 22-26, 2005.
doi:10.1109/LAWP.2004.841626

10. Kingsley, N., G. E. Ponchak, J. Papapolymerou, et al. "Recon Figureurable RF MEMS phased array antenna integrated within a Liquid Crystal Polymer (LCP) system-on-package," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 108-118, 2008.
doi:10.1109/TAP.2007.913151

11. Wang, G., R. Bairavasubramanian, B. Pan, et al. "Radio-frequency MEMS-enabled polarization-recon Figureurable antenna arrays on multilayer liquid crystal polymer," IET Microwaves Antennas and Propagation, Vol. 5, No. 13, 1594-1599, 2011.
doi:10.1049/iet-map.2011.0029

12. Wen, D., Y. Hao, M. O. Munoz, H. Wang, and H. Zhou, "A compact and low-profile MIMO antenna using a miniature circular high impedance surface for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 96-104, 2018.
doi:10.1109/TAP.2017.2773465

13. Li, H., S. Sun, B. Wang, and F. Wu, "Design of compact single-layer textile MIMO antenna for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3136-3141, 2018.
doi:10.1109/TAP.2018.2811844

14. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Dual-band textile MIMO antenna based on Substrate-Integrated Waveguide (SIW) technology," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4640-4647, 2015.
doi:10.1109/TAP.2015.2477094

15. Huang, S. S., J. Li, and J. Z. Zhao, "A novel compact planar triple-band monopole antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 50, No. 1, 117-123, 2014.
doi:10.2528/PIERL14072905

16. Wang, Y. D., J. H. Lu, and H. M. Hsiao, "Novel design of semi-circular slot antenna with triple-band operation for WLAN/WiMAX communication," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1531-1534, 2008.
doi:10.1002/mop.23422

17. Niu, B. and J. Tan, "Compact tri-band MIMO antenna based on quarter-mode slotted substrate-integrated-waveguide cavity," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 3, 2019.

18. Pasumarthi, S. R., J. B. Kamili, and M. P. Avala, "Design of tri-band MIMO antenna with improved isolation using DGS and Vias," Wireless Personal Communications, Vol. 110, No. 3, 2020.
doi:10.1007/s11277-019-06799-9

19. Niu, B. and J. Tan, "Half-mode SIW cavity antenna for tri-band MIMO applications," Microwave and Optical Technology Letters, Vol. 62, No. 4, 1697-1701, 2020.
doi:10.1002/mop.32214

20. Rajeshkumar, V. and R. Rajkumar, "SRR loaded compact tri-band MIMO antenna for WLAN/WIMAX application," Progress In Electromagnetics Research Letters, Vol. 95, 43-53, 2021.
doi:10.2528/PIERL20100704

21. Adam, I., H. A. Rahim, et al. "Mutual coupling suppression in wearable MIMO antenna for on/off-body WBAN applications," Journal of Physics: Conference Series, Vol. 1755, 012011, 2021.
doi:10.1088/1742-6596/1755/1/012011

22. Hazarika, B., B. Basu, and A. Nandi, "Design of dual-band conformal AMC integrated anetnna for SAR reduction in WBAN," Progress In Electromagnetics Research C, Vol. 110, 91-102, 2021.
doi:10.2528/PIERC20121202

23. Banerjee, J., A. Karmakar, R. Ghatak, and D. R. Poddar, "Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal Defected Ground Structure (DGS) for high isolation and triple band-notch characteristic," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 15, 1-16, 2017.
doi:10.1080/09205071.2017.1354727

24. Muhammad, I., N. Nguyen-Trong, and A. Abbosh, "Realization of a tapered slot array as both decoupling and radiating structure for 4G/5G wireless devices," IEEE Access, Vol. 7, 159112-159118, 2019.

25. Du, C., X. Li, and S. Zhong, "Compact liquid crystal polymer based tri-band flexible antenna for WLAN/WiMAX/5G applications," IEEE Access, 1-1, 2019.