Vol. 105
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-11-08
Development of a High Gain FSS Reflector Backed Monopole Antenna Using Machine Learning for 5G Applications
By
Progress In Electromagnetics Research M, Vol. 105, 183-194, 2021
Abstract
This work is devoted to the development of a high gain Frequency Selective Surface (FSS) reflector backed monopole antenna using Machine Learning (ML) techniques for 5G applications. It analyzes and solves the complexity of the determination of the optimum position of the FSS reflector and the ground dimension of the monopole in this composite antenna structure since there are no solid and standard formulations for the computation of these two parameters. ML modelling is involved in the development process for the sake of gain enhancement. It is applied to get the optimum position of the FSS reflector layer and the ground dimension of the monopole antenna. The proposed antenna structure is 50 mm × 50 mm, implemented on a Rogers 5880 substrate (thickness = 1.6 mm). Two different patch antenna structures, with and without FSS, are developed and considered in the current work. The antenna performance in terms of operating frequency, return loss, and gain is analysed using the finite element methods. The design is optimized for a targeting frequency band operating at 6 GHz (5.53 GHz to 6.36 GHz), which is suitable for 5G Sub-6 GHz applications. The obtained results show that the integration of the FSS layer below the antenna structure provides a simple and efficient method to obtain a low-profile and high-gain antenna. Finally, the proposed design is fabricated and measured, and a good agreement between the simulated and measured results is obtained. A comparison with similar studies in the literature is presented and shows that the current design is more compact in size, and the obtained radiation efficiency and gain are higher than other designs.
Citation
Mohammed Farouk Nakmouche, Abdemegeed Mahmoud Allam, Diaa E. Fawzy, and Ding-Bing Lin, "Development of a High Gain FSS Reflector Backed Monopole Antenna Using Machine Learning for 5G Applications," Progress In Electromagnetics Research M, Vol. 105, 183-194, 2021.
doi:10.2528/PIERM21083103
References

1. Zhao, W.-J., J. L.-W. Li, and K. Xiao, "Analysis of radiation characteristics of conformal microstrip arrays using adaptive integral method," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 1176-1181, 2012.
doi:10.1109/TAP.2011.2173135

2. Li, J. L.-W., Y.-N. Li, T.-S. Yeo, J. R. Mosig, and O. J. F. Martin, "Addendum: ``A broadband and high-gain metamaterial microstrip antenna''," Appl. Phys. Lett., Vol. 96, 164101, 2010; Appl. Phys. Lett., Vol. 99, 159901, 2011.
doi:10.1063/1.3396984

3. Abdulhasan, R. A., R. Alias, K. N. Ramli, F. C. Seman, and R. A. Abd-Alhameed, "High gain CPW-fed UWB planar monopole antenna-based compact uniplanar frequency selective surface for microwave imaging," Int. J. RF Microw. Comput.-Aided Eng., Vol. 29, No. 8, Art. No. e21757, 2019.

4. Zhao, W.-J., L.-W. Li, and K. Xiao, "Analysis of electromagnetic scattering and radiation from finite microstrip structures using an EFIE-PMCHWT formulation," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2468-2473, 2010.
doi:10.1109/TAP.2010.2048867

5. Yuan, N., T. S. Yeo, X. C. Nie, Y. B. Gan, and L.-W. Li, "Analysis of probe-fed conformal microstrip antennas on finite ground plane and substrate," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 554-563, 2006.
doi:10.1109/TAP.2005.863115

6. Yin, W.-Y., X.-T. Dong, J. F. Mao, and L.-W. Li, "Average power handling capability of finite-ground thin film microstrip lines over ultrawide frequency ranges," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 10, 715-717, 2005.
doi:10.1109/LMWC.2005.856829

7. Gao, S.-C., L.-W. Li, T.-S. Yeo, and M.-S. Leong, "A broad-band dual-polarized microstrip patch antenna with aperture coupling," IEEE Trans. Antennas Propag., Vol. 51, No. 4, 898-900, 2003.
doi:10.1109/TAP.2003.811080

8. Yuan, N., T.-S. Yeo, X. C. Nie, and L.-W. Li, "A fast analysis of scattering and radiation of large microstrip antenna arrays," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2218-2226, 2003. A correction is also made here (appearing in IEEE T-AP, Vol. 52, No. 7, 1921, Jul. 2004.).
doi:10.1109/TAP.2003.811082

9. Tahir, F. A., T. Arshad, S. Ullah, and J. A. Flint, "A novel FSS for gain enhancement of printed antennas in UWB frequency spectrum," Microw. Opt. Technol. Lett., Vol. 59, No. 10, 2698-2704, Oct. 2017.
doi:10.1002/mop.30789

10. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

11. Yuan, Y., X. Xi, and Y. Zhao, "Compact UWB FSS reflector for antenna gain enhancement," IET Microw., Antennas Propag., Vol. 13, No. 10, 1749-1755, Aug. 2019.
doi:10.1049/iet-map.2019.0083

12. Rezaee, P., M. Tayarani, and R. Knöchel, "Active learning method for the determination of coupling factor and external Q in microstrip filter design," Progress In Electromagnetics Research, Vol. 120, 459-479, 2011.
doi:10.2528/PIER11071901

13. Al-Gburi, J. A., I. B. M. Ibrahim, M. Y. Zeain, and Z. Zakaria, "Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector," IEEE Access, Vol. 8, 92697-92707, 2020.

14. Asimakis, N. P., I. S. Karanasiou, and N. K. Uzunoglu, "Non-invasive microwave radiometric system for intracranial applications: A study using the conformal L-notch microstrip patch antenna," Progress In Electromagnetics Research, Vol. 117, 83-101, 2011.
doi:10.2528/PIER10122208

15. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, and D. B. Lin, "Low profile dual band H-slotted DGS based antenna design using ANN for K/Ku band applications," 2021 8th Int. Conf. Electr. Electron. Eng. ICEEE 2021, 2021.

16. Nakmouche, M. F., H. Taher, D. E. Fawzy, and A. M. M. A. Allam, "Development of a wideband substrate integrated waveguide bandpass filter using H-slotted DGS," The 6th IEEE Conference on Antenna Measurements & Applications (CAMA), Oct. 2019.

17. Nakmoucheand, M. F. and M. Nassim, "Impact of metamaterials DGS in PIFA antennas for IoT terminals design," The 6th International Conference on Image and Signal Processing and Their Applications, Nov. 2019.

18. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, H. Taher, and M. F. A. Sree, "Dual band SIW patch antenna based on H-slotted DGS for Ku band application," The 7th IEEE International Conference on Electrical and Electronics Engineering, Apr. 2020.

19. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

20. Sakran, F. and Y. Neve-Oz, "Absorbing frequency-selective surface for the mm wave range," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2649-2655, 2008.
doi:10.1109/TAP.2008.924701

21. Vardaxoglou, J. C., Frequency Selective Surfaces: Analysis and Design, Wiley, New York, 1997.

22. Kim, J. H., C.-H. Ahn, and J.-K. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 1164-1167, Jan. 2016.
doi:10.1109/TAP.2016.2518650

23. Sarkhel, A. and S. R. B. Chaudhuri, "Enhanced-gain printed slot antenna using an electric metasurface superstrate," Appl. Phys. A, Vol. 122, 934, 2016.
doi:10.1007/s00339-016-0464-2

24. Fernandes, E. M. F., M. W. B. da Silva, L. da Silva Briggs, A. L. P. de Siqueira Campos, H. X. de Araújo, I. R. S. Casella, C. E. Capovilla, V. P. R. M. Souza, and L. J. de Matos, "2.4-5.8 GHz dual-band patch antenna with FSS reflector for radiation parameters enhancement," AEU International Journal of Electronics and Communications, Vol. 108, 235-241, 2019.
doi:10.1016/j.aeue.2019.06.021

25. Tilak, G. B. G., S. K. Kotamraju, B. T. P. Madhav, K. Ch. Sri Kavya, and M. Venkateswara Rao, "Dual sensed high gain heart shaped monopole antenna with planar artificial magnetic conductor," Journal of Engineering Science and Technology, Jun. 2020.

26. Zhai, H., K. Zhang, S. Yang, and D. Feng, "A low-profile dual-band dual-polarized antenna with an AMC surface for WLAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2692-2695, 2017.
doi:10.1109/LAWP.2017.2741465

27. Liu, Q., H. Liu, W. He, and S. He, "A low-profile dual-band dual-polarized antenna with an AMC reflector for 5G communications," IEEE Access, Vol. 8, 24072-24080, 2020.
doi:10.1109/ACCESS.2020.2970473

28. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, D. B. Lin, and M. F. A. Sree, "Development of H-slotted DGS based dual band antenna using ANN for 5G applications," 15th Eur. Conf. Antennas Propag. (EuCap), 2021.

29. El Misilmani, H., T. Naous, and S. Al Khatib, "A review on the design and optimization of antennas using machine learning algorithms and techniques," International Journal of RF and Microwave Computer-Aided Engineering, 2020.

30. Kumar, R., P. Kumar, S. Singh, and R. Vijay, "Fast and accurate synthesis of frequency reconfigurable slot antenna using back propagation network," AEU - Int. J. Electron. Commun., Vol. 112, 152962, 2019.
doi:10.1016/j.aeue.2019.152962

31. Alemaryeen, A. and S. Noghanian, "Crumpling effects and specific absorption rates of flexible AMC integrated antennas," IET Microw., Antennas Propag., Vol. 12, No. 4, 627-635, Mar. 2018.
doi:10.1049/iet-map.2017.0652

32. Jiang, Z. H., Z. Cui, T. Yue, Y. Zhu, and D. H. Werner, "Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks," IEEE Trans. Biomed. Circuits Syst., Vol. 11, No. 4, 920-932, Aug. 2017.
doi:10.1109/TBCAS.2017.2671841

33. Abbasi, M. A. B., S. S. Nikolaou, M. A. Antoniades, M. N. Stevanovic, and P. Vryonides, "Compact EBG-backed planar monopole for BAN wearable applications," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 453-463, Feb. 2017.
doi:10.1109/TAP.2016.2635588

34. Jiang, Z. H., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body area network devices," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4021-4030, Aug. 2014.
doi:10.1109/TAP.2014.2327650

35. Raa, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 524-531, Feb. 2013.
doi:10.1109/TAP.2012.2223449

36. Cook, B. S. and A. Shamim, "Utilizing wideband AMC structure for high-gain inkjet-printed antennas on lossy paper substrate," IEEE Antennas Wireless Propag. Lett., Vol. 12, 76-79, 2013.
doi:10.1109/LAWP.2013.2240251

37. Ashyap, A. Y. I., et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2550-2553, 2017.
doi:10.1109/LAWP.2017.2732355

38. Poffelie, L. A. Y., P. J. Soh, S. Yan, and G. A. E. Vandenbosch, "A highfidelity all-textile UWB antenna with low back radiation for off-body WBAN applications," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 757-760, Feb. 2016.
doi:10.1109/TAP.2015.2510035

39. Simorangkir, R. B. V. B., A. Kiourti, and K. P. Esselle, "UWB wearable antenna with a full ground plane based on PDMS-embedded conductive fabric," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 3, 493-496, Mar. 2018.
doi:10.1109/LAWP.2018.2797251