Vol. 112
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-26
Design and Analysis of a Mid-Infrared Ultra-High Sensitive Sensor Based on Metal-Insulator-Metal Structure and Its Application for Temperature and Detection of Glucose
By
Progress In Electromagnetics Research M, Vol. 112, 81-91, 2022
Abstract
In this paper, a compact and highly sensitive refractive index plasmonic sensor, based on a metal-insulator-metal (MIM) waveguide coupled to double hexagonal ring-shaped resonators in the mid-infrared range, is proposed and analyzed using the finite-difference time-domain (FDTD) method embedded in the commercial simulator R-soft, where it has been found that the transmission peaks and dipspositions can be easily manipulated, by simply adjusting the structural parameters of the proposed design, such as the inner side length and the distance between the centers of the two hexagonal ring resonators. So, these parameters have a key role in the sensor's performances, and it is clearly noticed from the results, where a linear link between the refractive index of the material under testing and its wavelength resonances was established. Furthermore, the maximum achievable linear sensitivity was S = 4074 nm/RIU, with a matching sensing resolution of 2.45 x 10-6 RIU; the temperature sensitivity is around 1.55 nm/°C; and the highest linear sensitivity is S = 3910 nm/RIU in 0-200 g/L glucose concentration, making this proposed sensor an attractive one, to be implemented in high-performance nano and bio-sensing devices.
Citation
Hocine Bensalah, Abdesselam Hocini, and Hocine Bahri, "Design and Analysis of a Mid-Infrared Ultra-High Sensitive Sensor Based on Metal-Insulator-Metal Structure and Its Application for Temperature and Detection of Glucose," Progress In Electromagnetics Research M, Vol. 112, 81-91, 2022.
doi:10.2528/PIERM22032604
References

1. Ben Salah, H., A. Hocini, M. N. Temmar, and D. Khedrouche, "Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor," Chinese J. Phys., Vol. 61, 86-97, 2019.

2. Gramotnev, D. K. and I. B. Sergey, "Plasmonics beyond the difraction limit," Nature Photonics, Vol. 4, No. 2, 83-91, 2010.

3. Bahri, H., S. Mouetsi, A. Hocini, and H. Ben Salah, "A high sensitive sensor using MIM waveguide coupled with a rectangular cavity with Fano resonance," Opt. Quant. Electron., Vol. 53, 332, 2021.

4. Tavousi, A., M. A. Mansouri-Birjandi, and M. Janfaza, "Graphene nanoribbon assisted refractometer based biosensor for mid-infrared label-free analysis," Plasmonics, Vol. 14, No. 5, 1207-1217, 2019.

5. Huang, Z., L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, "A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface," Journal of Optics, Vol. 16, No. 10, 105004, 2014.

6. Han, Z., L. Liu, and Erik, "Ultra-compact directional couplers and Mach Zehnder interferometers employing surface plasmon polaritons," Optics Communications, Vol. 259, No. 2, 690-695, 2006.

7. Fang, Z., Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, G. de Abajo, F. Javier, P. Nordlander, X. Zhu, and N. J. Halas, "Active tunable absorption enhancement with graphene nanodisk arrays," Nano Letters, Vol. 14, No. 1, 299-304, 2014.

8. Gomez, D., S. Juan, and P. Julien, "Graphene-based plasmonic switches at near infrared frequencies," Optics Express, Vol. 21, No. 13, 15490-15504, 2013.

9. Sadeghi, T., T. G. Saeed, and B. Hamed, "Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory," Applied Physics B, Vol. 125, No. 10, 189, 2019.

10. Dolatabady, A. and G. Nosrat, "All-optical logic gates in plasmonic metal-insulator-metal nanowaveguide with slot cavity resonator," Journal of Nanophotonics, Vol. 11, No. 2, 026001, 2017.

11. Madadi, Z, K. Abedi, G. Darvish, and M. Khatir, "An infrared narrow-band plasmonic perfect absorber as a sensor," Optik, Vol. 183, 670-676, 2019.

12. Ben Salah, H., A. Hocini, H. Bahri, and N. Melouki, "High sensitivity plasmonic sensor based on metal-insulator-metal waveguide coupled with a notched hexagonal ring resonator and a stub," ECS Journal of Solid State Science and Technology, Vol. 10, No. 8, 081001, 2021.

13. Soref, R., "Mid-infrared photonics in silicon and germanium," Nature Photonics, Vol. 4, No. 8, 495-497, 2010.

14. Singh, V., L. T. Pao, P. Neil, and L. Hongtao, "Mid-infrared materials and devices on a Si platform for optical sensing," Science and Technology of Advanced Materials, Vol. 15, 014603, 2014.

15. Hodgkinson, J. and R. P. Tatam, "Optical gas sensing: A review," Measurement Science and Technology, Vol. 24, No. 1, 012004, 2012.

16. El Shamy, R. S., D. Khalil, and M. A. Swillam, "Mid infrared optical gas sensor using plasmonic Mach-Zehnder interferometer," Sci. Rep., Vol. 10, 1293, 2020.

17. Sharif, M. and A. Swillam, "Metal-Less silicon plasmonic mid-infrared gas sensor," Journal of Nanophotonics, Vol. 10, No. 2, 026025, 2016.

18. Wang, G., H. Lu, X. Liu, Y. Gong, and L. Wang, "Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium," Applied Optics, Vol. 50, No. 27, 5287-5290, 2011.

19. Wu, T. S., Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. Ye, "The sensing characteristics of plasmonic waveguide with a ring resonator," Opt. Express, Vol. 22, No. 7, 7669-7677, 2014.

20. Rakhshani, M. R., "Refractive index sensor based on concentric triple racetrack resonators side coupled to metal-insulator-metal waveguide for glucose sensing," Journal of the Optical Society of America B, Vol. 36, No. 10, 2834-2842, 2019.

21. Shi, H., S. Yan, X. Yang, X. Wu, W. Wu, and E. Hua, "A nanosensor based on a metal-insulator-metal bus waveguide with a stub coupled with a racetrack ring resonator," Micromachines, Vol. 12, No. 5, 495, 2021.

22. Chou Chau, Y. F., C. T. Chou Chao, H. J. Huang, N. T. Kumaran, C. M. Lim, and H. P. Chiang, "Ultra-high refractive index sensing structure based on a metal-insulator-metal waveguide-coupled T-shape cavity with metal nanorod defects," Nanomaterials, Vol. 9, 1433, 2019.

23. Chou Chau, Y. F., "Mid-infrared sensing properties of a plasmonic metal-insulator-metal waveguide with a single stub including defects," J. Phys. D: Appl. Phys., Vol. 53, No. 11, 2020.

24. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Boston, MA, USA, 2005.

25. Zafar, R. and M. Salim, "Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor," IEEE Sensors Journal, Vol. 15, No. 11, 6313-6317, 2015.

26. Xie, Y., Y. Huang, W. Zhao, W. Xu, and C. He, "A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity," IEEE Photonics Journal, Vol. 7, No. 2, 1-12, 2015.

27. Hocini, A., H. Ben Salah, D. Khedrouche, and N. Melouki, "A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal-insulator-metal structure," Optical and Quantum Electronics, Vol. 52, 336-345, 2020.

28. Areed, N. F., M. F. O. Hameed, and S. S. A. Obayya, "Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring," Opt. Quant. Electron., Vol. 49, 1-12, 2017.

29. Sagor, R. H., M. F. Hassan, A. A. Yaseer, E. Surid, and M. I. Ahmed, "Highly sensitive refractive index sensor optimized for blood group sensing utilizing the Fano resonance," Appl. Nanosci., Vol. 11, 521-534, 2021.

30. Jubayer, M. A., H. Rakib, and M. I. Zahurul, "Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 25, 52-57, 2017.

31. Rakhshani, M. and M. Mansouri-Birjandi, "High sensitivity plasmonic refractive index sensing and its application for human blood group identification," Sens. Act. B: Chem., Vol. 249, 168-176, 2017.

32. Sagor, R., M. Hassan, S. Sharmin, T. Adry, and M. Emon, "Numerical investigation of an optimized plasmonic on-chip refractive index sensor for temperature and blood group detection," Results Phys., Vol. 19, 2020.

33. Hassan, M. F., I. Tathfif, M. Radoan, and R. H. Sagor, "A concentric double-ring resonator based plasmonic refractive index sensor with glucose sensing capability," 2020 IEEE Reg. 10 Conf., 91-96, 2020.

34. Butt, M. A., N. L. Kazanskiy, and S. N. Khonina, "Highly integrated plasmonic sensor design for the simultaneous detection of multiple analytes," Curr. Appl. Phys., Vol. 20, 1274-1280, 2020.

35. Chou Chau, Y. F., "Multiple-mode bowtie cavities for refractive index and glucose sensors working in visible and near-infrared wavelength range," Res. Sq., 1-25, 2021.

36. Jung, W. K. and K. M. Byun, "Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors," Biomed. Eng. Lett., Vol. 1, 153-162, 2011.

37. Lee, F. Y., K. H. Fung, T. L. Tang, W. Y. Tam, and C. T. Chan, "Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography," Curr. Appl. Phys., Vol. 9, 820-825, 2009, https://doi.org/10.1016/j.cap.2008.07.017.

38. López-Muñoz, G. A., M. C. Estevez, E. C. Peláez-Gutierrez, A. Homs-Corbera, M. C. García- Hernandez, J. I. Imbaud, and L. M. Lechuga, "A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated micro uidics for sensitive biodetection," Biosens. Bioelectron., Vol. 96, 260-267, 2017, https://doi.org/10.1016/j.bios.2017.05.020.

39. Kazanskiy, N. L., M. A. Butt, and S. N. Khonina, "Nanodots decorated MIM semi-ring resonator cavity for biochemical sensingapplications," Photonics Nanostructures --- Fundam. Appl., Vol. 42, 100836, 2020, https://doi.org/10.1016/j.photonics.2020.100836.